研究生: |
侯武桓 Hou, Wu-Huan |
---|---|
論文名稱: |
梳狀聚醚共聚物應用於固態電解質之研究 Study on the Comb-Like Polymer Electrolyte with Polar Group |
指導教授: |
陳志勇
Chen, Chuh-Yung |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 118 |
中文關鍵詞: | 固態電解質 、導電度 |
外文關鍵詞: | polyelectrolyte, conductivity |
相關次數: | 點閱:76 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要以Poly(ethylene glycol)methyl ether methacrylate (PEGMEM)為主體,引入不同極性基單體與PEGMEM形成共聚合物。首先,於水跟DMF共溶劑中經聚合而得含氰基之梳狀聚醚共聚物,其次為於水溶液中聚合得含亞胺二乙酸之梳狀聚醚共聚物,最後則是於水-乙醇共溶劑中聚合得兩相排列較為random的含亞胺二乙酸之梳狀聚醚共聚物。而所有的聚合物皆溶合過氯酸鋰(LiClO4)以形成高分子固態電解質,並探討其溶合鋰鹽的能力、鋰離子的分布狀態、導電度與導電行為。
對本研究所合成的高分子而言,鋰離子會與PEGMEM的醚基與極性基團(氰基、螯合基)作用,當鋰離子與醚基和極性基鏈段產生配位鍵結時,會形成物理性架橋而使高分子鏈段的Tg上升。在導電度方面,所有電解質的導電度皆隨著鋰鹽濃度的增加而先升後降,且有一極大值。
對於含氰基梳狀聚醚共聚物而言,氰基確實可以增加高分子溶合鋰離子的能力。由固態NMR和DSC得知,在低鋰鹽濃度時,鋰離子先與PEGMEM鏈段作用。但隨鋰鹽濃度的上升,鋰離子會同時與PEGMEM和AN鏈段都產生配位鍵結。至於導電行為方面,則遵守Arrhenius方程式,即離子是activated hopping的運動方式。此外,因AN鏈段的側鏈較短、自由體積小的關係,而使其最佳導電度未盡理想為1.4×10-7 Scm-1。
對於水溶液聚合之含螯合基之梳狀聚醚共聚物而言,而螯合基也可以增加高分子溶合鋰離子的能力。在低鋰鹽濃度時,鋰離子先與GMA-IDA鏈段作用。但隨著鋰鹽濃度的上升,鋰離子會同時與GMA-IDA和PEGMEM鏈段都產生配位鍵結。導電機構符合VTF方程式,表其導電方法為利用高分子鏈節的運動將鋰離子有效的傳遞至另一高分子鏈上。而最佳導電度為1.3×10-5 Scm-1,已高於文獻所述的梳狀電解質之導電度。
對於共溶劑聚合之含螯合基之梳狀聚醚共聚物而言,其跟在水溶液聚合而得的共聚物一樣,在低鋰鹽濃度時,鋰離子先與GMA-IDA鏈段作用,隨著鋰鹽濃度的上升,鋰離子會同時與GMA-IDA和PEGMEM鏈段都產生配位鍵結。但若鋰鹽濃度超過高分子可溶合量時,會有離子對產生。其最佳導電度為8.6×10-6 Scm-1,略低於以水為溶劑聚合的電解質,此應是相混和使高分子的鏈運動性下降,造成導電度變得較不理想。其導電機構亦符合VTF方程式。
A comb-like copolymer, which were synthesized by poly(ethylene glycol-methyl ether methacrylate) (PEGMEM) and polar units (nitrile group or chelating functional group), were used as the matrices of solid polymer electrolytes based on lithium salt in this study.
The comb-like copolymer with a nitrile group is synthesized by poly(ethylene glycol-methyl ether methacrylate) (PEGMEM) and acrylonitrile (AN). FTIR spectra reveal the interactions of Li+ ions with both the ether oxygen of the PEGMEM and the nitrogen atom of the AN segments. 7Li solid-state NMR spectra demonstrate the interactions of Li+ ions with both the ether oxygen of the PEGMEM and the nitrogen atom of the AN segments. Moreover, 7Li solid-state NMR shows that the lithium ions are preferentially coordinated to the PEGMEM segment. The Tg increases for the copolymers doped with LiClO4. These results indicate the interactions of Li+ with both PEGMEM and AN segments form transient cross-links. Because the side chain of AN segment is short and the free volume is small, the highest ionic conductivity is just 1.4×10-7 Scm-1. The AN unit in the copolymer improves the dissociation of the lithium salt, and the mechanical strength.
The comb-like copolymer with a chelating functional group is synthesized by poly(ethylene glycol-methyl ether methacrylate) (PEGMEM) and (2-methylacrylic acid 3-(bis-carboxymethylamino) -2-hydroxy-propyl ester) (GMA-IDA) in water(Ⅰ) or in co-solvent(Ⅱ). For both kind of comb-like copolymers with chelating functional groups, 7Li solid-state NMR spectra demonstrate the interactions of Li+ ions with both the ether oxygen of the PEGMEM and the nitrogen atom of the GMA-IDA segments. Moreover, 7Li solid-state NMR shows that the lithium ions are preferentially coordinated to the GMA-IDA segment. The Tg increases for the copolymers doped with lithium salts. These results indicate the interactions of Li+ with both PEGMEM and GMA-IDA segments form transient cross-links. The Vogel-Tamman-Fulcher (VTF)-like behavior of conductivity implies the coupling of the charge carriers with the segmental motion of the polymer chains. For comb-like copolymer with a chelating functional group is synthesized in water, the highest conductivity at 30℃ is 1.1×10-5 Scm-1. This conductivity is higher than 10-7~10-8 Scm-1 for conventional PEO-based electrolytes and ~10-6 Scm-1 for another comb-like copolymer. For comb-like copolymer with a chelating functional group is synthesized in co-solvent. Because of the degrees of phase mixing increase, the GMA-IDA decrease the motion of the polymer chain. Therefore, the highest conductivity at 30℃ is 8.6×10-6 Scm-1 which is lower than that synthesized in water. The 13C solid-state NMR spectra for the carbons attached to the ether oxygen atoms exhibited significant line broadening and a slight upfield chemical shift and short when the dopant was added to the polymer. These findings indicate coordination between the Li cation and the ether oxygens in the PEG segment. In this study, the GMA-IDA unit in the copolymer improves the dissociation of the lithium salt, the mechanical strength and the conductivity.
1. D. E. Fenton, J. M. Parker, P. V. Wright, Polymer, 14 (1973) 589.
2. M. B. Armand, “Second International meeting on Solid Electrolytes Extended
Abstracts”, St. Andrews Ecosse, 1978.
3. M. B. Armand, “Fast Ion Transport in Solids”, P. Vashishta Ed., North
Holland, New York, Sept 1979.
4. W. Xu, J. P. Belieres, C. A. Angell, Chem. Mater., 13 (2001) 575
5. P. V. Wright, Br. Polym. J., 7 (1975) 319.
6. M. B. Armand, Solid State Ionics, 9~10 (1983) 745.
7. M. B. Armand, J. M. Chabagno, M. J.Duclot, “Fast Ion Transport in Solids”,
P. Vashishta, J. N. Mundy, G. K. Shenoy Ed., North Holland, New York, Sept
1979.
8. A. G. Einset, G. E. Wnek, “Polymer Electrolytes Review, Handbook of Solid
State”, Batteries & Capacitors, Chap.15
9. M. Stainer, L. C. Hardy, D. H. Whitmore, D. F. Shriver, J. Electrochem.Soc.,
131 (1984) 784.
10. M. Yakoyama, H. Ishihara, I. H. Iwamoto, H. Tasokoro, Macromolecules, 2
(1969) 184.
11. C. Berthier, W. Gorecki, M. Minier, Solid State Ionics, 11 (1983) 91.
12. M. Watanabe, K. Sanui, N. Ogata, F. Inoue, T. Kobayashi, Z. Ohtaki, Polym.
J., 18 (1984) 711.
13. E. Tsuchidu, H. Ohno, K. Tsunemi, N. Kobayashi, Solid State Ionics, 11 (1983)
227.
14. N. Kobayashi, M. Uchiyama, K. Shigehara, E. Tsuchidu, J. Phys. Chem., 89
(1985) 987.
15. J. Li and I. M. Khan, Macromolecules, 26 (1993) 4544.
16. J. E. Weston, B. C. H. Steele, Solid State Ionics, 7 (1982) 75.
17. J. Przyluski, W. Wieczorek, Solid State Ionics, 36 (1989) 165.
18. F. Capuano, F. Croce, B. Scrosati, J. Electrochem. Soc., 138 (1991) 1918.
19. W. Gang, J. Roo, D. Brinkmann, F. Capuano, F. Croce, B. Scrosati, Solid State
Ionics, 53~56 (1992) 1102.
20. F. Croce, B. Scrosati, G. Mariotto, Chem. Mater., 4 (1992) 1134.
21. B. Scrosati, F. Croce, Pol. Adv. Technol., 4 (1993) 198.
22. F. Croce, B. Scrosati, J. Power Sources, 43~44 (1993) 9.
23. P. M. Blonsky, D. F. Shriver, P. Austin, H. R. Allcock, J. Am. Chem. Soc.,
106 (1984) 6854.
24. D. W. Xia, J. Smid, J. Polym. Sci., Polym. Lett., 22 (1984) 617.
25. D. W. Xia, D. Soltz, J. Smid, Solid State Ionics, 14 (1984) 221.
26. D. J. Bannister, G. R. Davies, I. M. Ward, J. E. Mclnlyre, Polymer, 25 (1984)
1600.
27. E. A. Rietman, M. L. Kaplan, R. J. Cava, Solid State Ionics, 25 (1987) 41.
28. D. F. Fish, I. M. Han, J. Smid, Polym. Commun., 27 (1986) 364.
29. P. G. Hall, G. R. Davies, E. McIntyre, I. M. Ward, D. J. Bannister, K. M. Le
Brocq, Polym. Commun., 27 (1986) 98.
30. P. M. Blonsky, D. F. Shriver, J. Am. Chem. Soc., 106 (1984) 6854.
31. M. Watanabe, J. Power Sources, 20 (1987) 327.
32. P. M. Blonsky, D. F. Shriver, Solid State Ionics, 18 (1986) 258.
33. H. R. Alcock, P. S. Austin, Macromolecules, 19 (1986) 1508.
34. J. M. G. Cowie, K. Sadaghianizadeh, Solid State Ionics, 42 (1990) 243.
35. J. S. Gnanaraj, R. N. Karekar, S. Skaria, C. R. Rajan, S. Ponrathnam,
Polymer, 38 (1997) 3709.
36. A. Nishimoto, K. Agehara, N. Furuya, T. Watanabe, M. Watanabe,
Macromolecules, 32 (1999) 1541.
37. Z. Florjanczyk, W. Bzducha, W. Wieczorek, E. Zygadol-Monikowska, W. Krawiec,
S. H. Chung, J. Phys. Chem., 48 (1998) 8409.
38. Z. Florjanczyk, W. Bzducha, N. Langwald, J. R. Dygas, F. Krok, B.
Misztal-Faraj, Electrochimica Acta, 45 (2000) 3563.
39. D. J. Banniser, G. R. Davies, I. M. Ward, J. E. McIntyre, Polymer, 25 (1984)
1291.
40. N. Kobyashi, M. Uchiyama, E. Tsuchida, Solid State Ionics, 17 (1986) 307.
41. E. Tsuchida, H. Ohno, N. Kobyashi, H. Ishizaka, Macromolecules, 21 (1988) 96.
42. D. Benraban, S. Sylla, F. Alloin, J. Y. Sanchez, M. Armand, Electrochim., 40
(1995) 2259.
43. S. Hu, S. B. Fang, Macromol. Rapid Commun., 19 (1998) 539.
44. J. Smid, I. Fish, Macromolecules, 21 (1989) 2684.
45. K. M. Abraham, M. Alamgir, J. Power Sources, 195 (1993) 43.
46. F. Croce, F. Gerace, G. Dauzemberg, S. Passerini, G. B. Appetecchi, B.
Sorosati, Electrochimica Acta, 39 (1994) 2187.
47. Z. Wang, B. Huang, R. Xue, X. Huang, L. Chen, Solid State Ionics, 121 (1999)
141.
48. A. Stephan, T. Manuel, R. Thirunakaran, N. G. Renganathan, V. Sundaram, S.
Pitchumani, N. Muniyandi, R. Gangadharan, P. Ramamoorthy, J. Power Sources,
81~82 (1999) 752.
49. M. Watanabe, M. Kanba, H. Matsuda, K. Tsunemi, K. Mizoguchi, E. Tsuchida, I.
Shinohara, Makromol. Chem. RapidComm., 2 (1981) 741.
50. J. M. Tarascon, A. S. Gozdz, C. Schmutz, F. Shokoohi, P. C. Warren, Solid
State Ionics, 86~88 (1996) 49.
51. F. L. Tanella, W. Bailey, D. Frydrych, G. C. Farrington, Solid State Ionics,
5 (1981) 681.
52. R. Dupon, D. H. Whitmore, D. F. Shriver, J. Electrochem. Soc., 128 (1981)
715.
53. C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, P. Rigaud,
Solid State Ionics, 11 (1983) 91.
54. D. F. Shriver, G. C. Farrington, Chem. Eng. News, 63 (1985) 42.
55. S. D. Druger, M. A. Ratner, A. Nitzan, Solid State Ionics, 9-10 (1983) 1115.
56. J. J. Fonlanella, M. C. Wintersgill, J. P. Calame, F. P. Pursel, D. R.
Figueroa, Solid State Ionics, 9-10 (1983) 1139.
57. J. M. Blaney, P. K. Weiner, A. Dearing, P. A. Kollman, E. C. Jorgensen, S. J.
Oatley, J. M. Burridge, C. C. F. Blake, J. Am. Chem. Soc., 104 (1982) 6247.
58. B. L. Ruke, M. A. Ratner, D. F. Shriver, J. Phys. Chem. Solid, 42 (1981) 493.
59. R. M. Jeremy, P. G. Martin, Polym. Commun., 27 (1986) 360.
60. B. L. Papke, M. A. Ratner, D. F. Shriver, J. Electrochem. Soc., 129 (1982)
1694.
61. D. F. Shriver, B. L. Papke, M. A. Ratner, R.Dupon, T. Wong, M. Brodwin, Solid
State Ionics, 5 (1981) 83.
62. L. L. Yang, R. Huq, G. C. Farrington, Solid State Ionics, 18-19 (1986) 291.
63. L. L. Yang, A. R. McGhie, G. C. Farrington, J. Electrochem. Soc., 133 (1986)
1380.
64. J. J. Fonlanella, M. C. Wintersgill, J. P. Calame, J. Polym. Sci., Ploym.
Phys. Ed., 23 (1985) 113.
65. A. Patrick, Solid State Ionics, 18-19 (1986) 1063.
66. T. M. A. Abrantes, L. J. Alcacer, C. A. C. Sequeira, Solid State Ionics,
18-19 (1986) 315.
67. P. Ferloni, Solid State Ionics, 18-19 (1986) 265.
68. Y. Takahashi, H. Tadokoro, Macromolecules, 6 (1973) 672.
69. B. L. Papke, J. Chem. Phys., 42 (1998) 193.
70. B. L. Papke, M. A. Ratner, D. F. Shriver, J. Electrochem. Soc., 129 (1982)
1434.
71. J. F. Le Nest, A. Gandini, H. Cheradame, Br. Polym. J., 20 (1988).
72. M. Watanabe, S. Oohashi, K. Sanui, N. Ogata, T. Kobayashi, Z. Ohtaki,
Macromolecules, 18 (1985) 1945.
73. P. R. Sorenson, T. Jasobsen, Electrochimica Acta, 27 (1982) 1671.
74. M. D. Armand, J. M. Chabagno, M. Duclot, Presented at Int. Conf. on Solid
Electrolytes, St. Andrews Univ., UK, 1978.
75. D. Benrabh, S. Sylla, F. Alloin, J. Y. Sanchez, M. Arnamd, Electrochim. Acta,
40 (1995) 2259.
76. D. J. Bannister, G. R. Davies, I. M. Ward, Polymer, 25 (1984) 1291.
77. S. Ganapathiappan, K. Chen, D. F. Shriver, Macromolecules, 21 (1988) 2299.
78. L. C. Hardy, D. F. Shriver, Macromolecules, 17 (1984) 975.
79. N. Kobayashi, K. Shigehara, E. Tsuchida, Polym. Prepr. Japan, 33 (1984) 485.
80. N. Kobayashi, H. Ohno, Macromolecules, 21 (1988) 96.
81. Z. Florjanczyk, W. Bzducha, W. Wieczorek, E. Zygadol-Monikowska, W. Krawiec,
S. H. Chung, J. Phys. Chem., 48 (1998) 8409.
82. N. Kobayashi, M. Uchiyama, E. Tsuchida, Solid State Ionics, 17 (1985) 307.
83. F. M. Gray, ”Solid Polymer Electrolytes”, VCH Publishers, New York, 1991.
84. J. D. Van Heumen, J. R. Stevens, Macromolecules, 28 (1995) 4268.
85. A. Ferry, P. Jacobsson, Polymer, 37 (1996) 737.
86. W. J. Liang, C. L. Kuo, C. L. Lin, P. L. Kuo, Joural of Polymer Science: Part
A: Polymer Chemistry 40 (2002) 1226.
87. M. Watanabe, K. Sanui, N. Ogata, Macromolecules, 19 (1986) 815.
88. I. Albinson, B. E. Mellander, J. R. Stevens, J. Chem. Phys.
89. Z. X. Wang, B. Y. Huang, H. Huang, R. J. Xue, L. Q. Chen, F. S. Wang,
Spectrochim. Acta Part A, 52(1996) 691.
90. J. S. Gnanaraj, R. N. Karekar, S. Skaria, S. Ponrathnam, Bulletin of
Electrochemistry 12 (1996) 738-742.
91. H. L. Wang, H. M. Kao, T.C. Wen, Macromolecules 33 (2000) 6910-6912.
92. A. Abragam, “The Principle of Nuclear Magnetism”, Oxford University, Oxford
1961.
93. C. A. Furtado, G. G. Silva, J. C. Machado, M. A. Pimenta, R.A. Silva, J.
Phys. Chem. B, 103 (1999) 7102.
94. A. Nishimoto, M. Watanabe, Y. Ikeda, S. Kohjiya, Electrochimica Acta, 43
(1998) 1177.
95. M. Watanabe, T. Endo, A. Nishimoto, K. Miura, M. Yanagida, Journal of Power
Sources, 81-82 (1999) 786.
96. A. Nishimoto, M. Watanabe, Y. Ikeda, S. Kohjiya, Electrochimica Acta, 43
(1998) 1177.
97. M. Watanabe, T. Endo, A. Nishimoto, K. Miura, M. Yanagida, Journal of Power
Sources, 81-82 (1999) 786.
98. A.Ferry, G. Oradd, P. Jacobson, J. Chem. Phys., 108 (1998) 7426.
99. F. M. Gray, “Polymer electrolytes”, 1st ed., The Royal Society of
Chemistry, London, 1997.
100. Z. L. Peng, B. Wang, S. Q. Li, S. J. Wang, H. Liu, H. Q. Xie, Phys Lett A,
194 (1994) 228.
101. C. C. Wang, C. C. Chang, C. Y. Chen, Macrom Chem & Phys 202 (2001) 882-890.
102. C. C. Wang, C. Y. Chen, J Appl Polym Sci 85 (2002) 919-928.
103. C. C. Wang, C. Y. Chen, C. C. Chang, J Appl Polym Sci 84 (2002) 1353-1362.
104. A. Bernson, J. Lindgren, Solid State Ionics, 60 (1993) 37.
105. A. Wendsjo, J. Lindgren, J. O. Thomas, G. C. Farrington, Solid State Ionics,
53-56 (1992) 1077.
106. A. Bernson, J. Lindgren, Solid State Ionics 60 (1993) 31.
107. A. G. Bishop, D. R. Macfarlane, D. McNaughton, Forstth, J. Phys. Chem., 100
(1996) 2237.
108. A. G. Bishop, D. R. Macfarlane, D. McNaughton, M. Forstth, Solid State
Ionics, 85 (1996) 129.
109. H. L. Wang, H. M. Kao, M. Digar, T. C. Wen, Macromolecules, 34 (2001) 529.
110. C. L. Lin, H. M. Kao, R. R. Wu, P. L. Kuo, Macromolecules, 35 (2002) 3083.
111. J. F. O΄Gara, G. Nazri, K. M. MacArthur, Solid State Ionics, 47 (1991) 87.
112. S. M. Lee, C. Y. Chen, C. C. Wang, Y. H. Huang, Electrochimica Acta, 48
(2003) 669.
113. S. M. Lee, C. Y. Chen, C. C. Wang, Electrochimica Acta, 48 (2003) 3699.
114. S. M. Lee, C. Y. Chen, C. C. Wang, Journal of Polymer Science:Part A:
Polymer Chemistry, 41 (2003) 4007.