簡易檢索 / 詳目顯示

研究生: 徐崇智
Hsu, Chung-Chih
論文名稱: 使用自由頻寬間距特性補償不平坦光訊頻譜降低分碼多工網路之多重存取干擾效應
Using Free-Spectral Range of Waveguide Gratings to Compensate for Optical CDMA Spectral Flattenness
指導教授: 黃振發
Huang, Jen-Fa
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 75
中文關鍵詞: 自由頻譜間距陣列波導光柵頻譜平坦補償多重存取干擾光分碼多工存取
外文關鍵詞: Arrayed-waveguide grating (AWG), Spectral flatness compensation (SFC), Optical code-division multiple-access (OCDMA), Free-spectral range (FSR), Multiple-access interference (MAI)
相關次數: 點閱:124下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在頻域振幅編碼的光分碼多工(SAC-OCDMA)網路中,頻譜平坦補償(Spectral Flatness Compensation, SFC)近來被研究在以陣列波導光柵(Arrayed-Waveguide Grating, AWG)所形成的編解碼器上,因為每一個網路使用者有著不同的簽署碼及分布在不同的頻譜波段,而由於非同調光源頻譜的不平坦將會導致嚴重的多重存取干擾(Multiple-Access Interference, MAI),因此我們提出了一個補償頻譜不平坦的簡單方法去降低多重存取干擾。藉由安排相同的碼型在不同的頻譜波段,從陣列波導光柵編解碼器所編出的頻譜波長功率將會非同調地相加在光偵測器端基於陣列波導光柵的自由頻譜區域特性(Free-Spectral Range, FSR),進而去達到每個頻譜波長功率幾乎相等。最後我們所提出的頻譜平坦補償方法經模擬分析出來的訊號雜訊比結果遠優於未補償的。
    一個頻譜平坦補償技術,實現在頻域振幅編碼的光分碼多工網路中,我們使用了參鉺光纖放大器所發出的自發性輻射放射光源(ER-ASE)、循環器、星狀耦合器、寬頻的啁啾布拉格光柵(Chirped-FBG)以及陣列波導光柵去作頻譜不平坦的補償,系統當中所使用的簽署碼是最大長度序列碼(M-sequence Codes),最後再去做平衡檢測得到使用者所傳的資訊。基於頻譜平坦補償實驗驗證,補償的系統性能優於未補償的系統。

    Spectrum compensation over an arrayed-waveguide grating (AWG)-based optical code-division multiple-access (OCDMA) network coder/decoder (codec) is investigated. Since each network user with different signature address code has different spectral distribution, the sliced spectral power is non-equal that will cause multiple-access interference (MAI) due to the non-flattened spectra of ASE source. Flatness compensation scheme is proposed to solve the MAI effects induced by non-flattened spectra. By arranging the same coding pattern on different coding bands, spectral chips from AWG coder/decoder will incoherently power summed by FSR (free-spectral range) characteristic of AWG in the photo-detectors to approach a more flattened power level. Signal-to- interference ratio (SIR) performances are evaluated with such compensation method for the discussed OCDMA network codec.
    A realizable technique of spectral flatness compensation (SFC) in spectral-amplitude- coding OCDMA (SAC-OCDMA) system consists of ASE incoherent broadband source, circulators, star couplers, chirped fiber Bragg gratings (chirped-FBGs) and AWGs for encoding/decoding of unipolar M-sequence codes with balanced detection. Based on spectral flatness compensation (SFC), it is experimentally demonstrated that the performance of such system is greater than the conventional system without SFC.

    Chapter 1. Introduction 1 1.1 Development of OCDMA History 2 1.2 Classification of OCDMA Technology 4 1.3 Motivation of Our Research 13 1.4 Sections Preview 13 Chapter 2. Applications of Waveguide Gratings over Optical CDMA Networks 15 2.1 Arrayed-Waveguide Gratings (AWGs) 15 2.2 The FSR Characteristic of AWG 18 Chapter 3. Spectral Flattenness in M-sequence Coded AWG Coder/Decoders 21 3.1 Maximal-Length Sequence (M-Sequence) Codes 21 3.2 Issues in AWG-based SAC-OCDMA Network 23 3.3 Spectral Flatness on SAC-OCDMA Network 29 3.4 AWG-based OCDMA Coder/Compensators 33 3.5 Example Illustration of Chips Power Compensation 35 3.6 Evaluation on Spectral Flatness Compensation 39 Chapter 4. Experimental Setup over Spectral Flattenness Compensations 44 4.1 Fundamental Setup 45 4.2 Experiments on Uncompensated Configuration 51 4.3 Experimental Results for Compensated Configuration 60 4.4 Discussions 68 Chapter 5. Concluding Remarks 69 References 70

    [1]. D. Zaccarin, and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photon. Technol. Lett., vol. 4, no. 4, pp. 479-482, April 1993.
    [2]. R. Dixon, “Why spread spectrum?,” IEEE Commun. Soc. Mag., vol. 13, pp. 21-25, July 1975.
    [3]. R. Scholtz, “The spread spectrum concept,” IEEE Trans. on Commun., vol. 25, no. 8, pp. 748-755, August 1977.
    [4]. R. Dixon, Spread Spectrum Systems with Commercial Applications, Wiley- Interscience, New York, 1994.
    [5]. M. Sust, “Code division multiple access for commercial communications,” in Review of Radio Science, pp. 155-179, 1992-1994, International Union of Radio Science (URSI).
    [6]. D. Grosbie, “The new space race: satellite mobile communications,” IEE Review, vol. 39, no. 3, pp. 111-114, May 1993.
    [7]. J. A. Salehi, “Code division multiple-access techniques in optical fiber network-Part I: Fundamental principles,” IEEE Trans. on Commun., vol. 37, no. 8, pp. 824-833, August 1989.
    [8]. J.A. Salehi and C.A. Brackett, “Code division multiple-access Techniques in optical fiber networks-Part II: Systems performance analysis,” IEEE Trans. on Commun., vol. 37, no. 8, pp. 834-842, August 1989.
    [9]. Z. Wei, H.M.H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” IEEE/OSA J. Lightwave Technol., vol. 19, no. 9, pp. 1274-1281, September 2001.
    [10]. E. Marom and O.G. Ramer, “Encoding-decoding optical fiber network,” Electron. Lett., vol. 14, no. 3, pp. 48, February 1978.
    [11]. G. Vannucci, “Combining frequency division multiplexing and code division multiplexing for high capacity optical network,” IEEE Network, vol. 3, no. 2, pp. 21-30, March 1989.
    [12]. N. Karafolas and D. Uttamchandani, “Optical fiber code division multiple access networks: a review,” Optical Fiber Technol., vol. 2, no. 17, pp. 149-168, February 1996.
    [13]. P. Prucnal, M. Santoro and T. Fan, “Spread spectrum fiber optic local area network using optical processing,” IEEE Network, vol. 4, no. 5, pp. 547-554, May 1986.
    [14]. W.C. Kwong, P. Perrier and P.R. Prucnal, “Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks,” IEEE Trans. on Commun., vol. 39, no. 11, pp. 1625-1634, November 1991.
    [15]. K. P. Jackson, G. Xaio and H. J. Shaw, “Coherent optical fiber delay-line processor,” Electron. Lett., vol. 22, no. 25, pp. 1335, December 1986.
    [16]. M.E. Marhic, “Trends in optical CDMA,” in Multigigabit Fiber Communications, SPIE Proceedings vol. 1787, pp.80-97, Boston, December 1992.
    [17]. D.D. Sampson and D.A. Jackson, “Spread spectrum optical fiber network based on pulsed coherent correlation,” Electron. Lett., vol. 26, no. 19, pp. 1550-1552, September 1990.
    [18]. R.A. Griffin, D.D. Sampson, and D.A. Jackson, “Optical phase coding for code division multiple access,” IEEE Photon. Technol. Lett., vol. 4, no. 12, pp. 1401-1404, December 1992.
    [19]. D. Sampson, R.A. Griffin, and D.A. Jackson, “Photonic CDMA by coherent matched filtering using time-addressed coding in optical ladder networks,” IEEE/OSA J. Lightwave Technol., vol. 12, no. 11, pp. 2001-2010, November. 1994.
    [20]. J. Enriguz-Gabeiras, J. Camany, and R. Fernandez de Caleya, “Effect of non-ideal and fiber parameters on the performance of an all optical coherent code-division multiple-access,” in Proceedings of EFOC/LAN’92, pp. 146-151, Paris, June 1992.
    [21]. M. Brandt-Pearce and B. Aazhang, “Multiuser detection for optical code division multiple access systems,” IEEE Trans. on Commun., vol. 42, no. 2, pp.1801-1810, February./March./April. 1994.
    [22]. D.V. Sarwate and M.B. Pursley, “Cross correlation properties of pseudorandom and related sequences,” Proc. of the IEEE, vol. 68, no. 5, 593-619, May 1980.
    [23]. M.E. Marhic, “Coherent optical CDMA networks,” IEEE/OSA J. Lightwave Technol., vol. 11, no. 5/6, 854-863, May./June. 1993.
    [24]. J.A. Salehi, A.M. Weiner, and J.P. Heritage, “Coherent ultrashort light pulse code-division multiple-access communication systems,” IEEE/OSA J. Lightwave Technol., vol. 8, no. 3, pp. 478-491, March 1990.
    [25]. D. Zaccarin and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photon. Technol. Lett., vol. 5, no. 4, pp. 479-482, April 1993.
    [26]. M. Kavehrad and D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of non-coherent sources,” IEEE/OSA J. Lightwave Technol., vol. 13, no. 3, pp. 534 -545, March 1995.
    [27]. J.F. Huang, and D.Z. Hsu, “Fiber-grating-based optical CDMA spectral coding with nearly orthogonal M-sequence codes,” IEEE Photon. Technol. Lett., vol. 12, pp. 1252-1254, September 2000.
    [28]. C.C. Yang, J.F. Huang, and S.P. Tseng, “Optical CDMA network codecs structured with M-sequence codes over waveguide-grating routers,” IEEE Photon. Technol. Lett., vol. 16, pp. 641-643, February 2004.
    [29]. L. Nguyen, B. Aazhang, and J.F. Young, “All-optical CDMA with bipolar codes,” Electron. Letter, vol. 31, no. 17, pp.1469-1470, August 1995.
    [30]. E.D.J. Smith, R.J. Blaikie, and D.P. Taylor, “Performance enhancement of spectral-amplitude coding optical CDMA using pulse-position modulation,” IEEE Trans. on Commun., vol. 46, pp. 1176-1185, September 1998.
    [31]. H. Fathallah, L. A. Rusch, and S. LaRochelle, “Passive optical fast frequency-hop CDMA communications system,” IEEE/OSA J. Lightwave Technol., vol. 17, no. 3, pp. 397-405, March 1999.
    [32]. K. Yu, J. Shin, and N. Park, “Wavelength-Time spreading optical CDMA system using wavelength multiplexers and mirrored fiber delay lines,” IEEE Photon. Technol. Lett., vol. 12, no. 9, pp. 1278-1280, September 2000.
    [33]. J.E. Baran, G. Joyce, R. Olshansky, D.A. Smith, and S.F. Su, “Gain equalization multiwavelength lightwave systems using acousto-optic tunable filters,” IEEE Photon. Technol. Lett., vol. 4, no. 3, pp. 269-271, March 1992.
    [34]. P.M.J. Schiffer, C.R. Doerr, L.W. Stulz, M.A. Cappuzzo, E.J. Laskowski, A. Paumescu, L.T. Gomez, J.V. Gates, “Smart dynamic wavelength equalizer based on an integrated planar optical circuit for use in the 1550-nm region,” IEEE Photon. Technol. Lett., vol. 11, no 9, pp. 1150-1152, September 1999.
    [35]. L. Nguyen, T. Dennis, B. Aazhang, and J.F. Young, “Experimental demonstration of bipolar codes for optical spectral amplitude CDMA communication,” IEEE/OSA J. Lightwave Technology., vol. 15, no 9, pp.1647-1653, September 1997.
    [36]. J.F. Huang; C.M. Tsai; Y.L. Lo; “Compensating fiber gratings for source flatness to reduce multiple-access interferences in optical CDMA network coder/decoders,” IEEE/OSA J. Lightwave Technology, vol. 22, pp. 739-745, March 2004.
    [37]. M.K. Smit, “New focusing and dispersive planar component based on an optical phase array,” Electron. Lett., vol. 24, pp. 385-386, March 1988.
    [38]. H. Takahashi, K. Oda, H. Toda, and Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” IEEE/OSA J. Lightwave Technol., vol. 13, pp. 447-455, March 1995.
    [39]. H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on NxN optical interconnection,” IEEE/OSA J. Lightwave Technol., vol. 9, pp. 1285- 1287, September 1997.
    [40]. B. Glance, I.P. Kaminow, and R. W. Wilson, “Applications of the integrated waveguide grating router,” IEEE/OSA J. Lightwave Technol., vol. 12, no. 6, pp. 957- 962, June 1994.
    [41]. S. Kim, “Cyclic optical encoders/decoders for compact optical CDMA network,” IEEE Photon. Technol. Lett., vol. 12, pp. 428-430, April 2000.
    [42]. K. Yu, J. Shin, and N. Park, “Wavelength-Time spreading optical CDMA system using wavelength multiplexers and mirrored fiber delay lines,” IEEE Photon. Technol. Lett., vol. 12, pp. 1278–1280, September 2000.
    [43]. C.F. Lam, D.T.K. Tong, M.C. Wu and E. Yablonovitch, “Experimental Demonstration of Bipolar Optical CDMA System Using a Balanced Transmitter and Complementary Spectral Encoding,” IEEE Photon. Technol. Lett., vol. 10, no. 10, pp1504-1506, October. 1998.
    [44]. H. Takahashi, S. Suzuki, K. Katoh, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Letter, vol. 26, pp. 87-88, January 1990.
    [45]. C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon Technol. Letter, vol. 3, pp. 812-815, September 1991.
    [46]. L.R. Chen, “Technologies for hybrid wavelength-time optical CDMA transmission”, 2001 Canadian Conference on Electrical and Computer Engineering, vol. 1, pp. 435-440, May 2001.
    [47]. D.K.W. Lam, and B.K. Garside, “Characterization of single-mode optical fiber filters,” Applied Optics, vol. 20, pp. 440-445, February 1981.
    [48] J.F. Huang and C.C. Yang, “Reductions of Multiple-Access Interference in Fiber- Grating-Based Optical CDMA Network,” IEEE Trans. on Commun., vol. 50, no. 10, pp. 1680-1687, October 2002.
    [49]. C.D. Babich and J.F. Young, “Performance modeling of a planar waveguide based spectral encoding system,” IEEE Laser & Electro-Optics Society Annual Meeting Proceedings, pp. 523-524, November 1999.
    [50]. M. Kavehrad and D. Zaccarin,” Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” IEEE/OSA J. Lightwave Technol., vol. 13, no. 13, pp. 534-545, March 1995.
    [51].V.E. Perlin, and H.G. Winful, “Optimal design of flat-gain wide-band fiber Raman amplifiers,” IEEE/OSA J. Lightwave Technol., vol. 20, pp.250-254, February 2002.

    下載圖示 校內:2010-07-25公開
    校外:2010-07-25公開
    QR CODE