| 研究生: |
林彥亨 Lin, Yen-Heng |
|---|---|
| 論文名稱: |
利用介電泳力操控細胞之生物晶片研究 Micro Devices for Cell Manipulation Using Dielectrophoretic Forces |
| 指導教授: |
李國賓
Lee, Gwo-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 微機電系統 、生物晶片 、細胞晶片 、細胞操控 、介電泳 、微電極 、晶片型實驗室 、介電泳力 |
| 外文關鍵詞: | MEMS, biochip, dielectrophoretic force, lab-on-a-chip, microelectrode, dielectrophoresis, cell manipulation, cell chip |
| 相關次數: | 點閱:118 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功地利用微機電製程技術,設計並製作出一個利用介電泳力操控細胞之生物晶片。研究中首先詳細地介紹介電泳力基本原理,並對其數學模型進行推導;之後利用數值模擬方式,分析介電泳力之各項變數及設計實驗控制參數,並獲得以下模擬結果:(1)移動波式電位場於電極間之分佈。(2)正介電泳力、負介電泳力之力場分佈。(3)移動波式介電泳力之力場分佈。(4)不同初始位置細胞之移動軌跡。
在晶片製作部分,本研究利用微細加工方式,在玻璃基材上製作各式操控細胞用之微電極陣列,並提出一種方便、可靠且具有隨插即用功能的晶片封裝方式,利用標準匯流排PCI插槽,直接與微電極陣列相接,免除打線複雜、耗時之製程,並可重複使用,非常適合生物晶片封裝。
最後,本研究成功地利用各種不同操控模式,對塑膠微粒子及細胞進行操控,並分析其速度、軌跡與施加電場、粒子大小及電極間距之關係。研究發現,數值模擬資料及理論公式均與實驗結果吻合。藉由此研究之成果,相信能對未來應用介電泳力於生物晶片研發上,具有重大之貢獻。
A novel microchip device for manipulation of micro particles and cells using dielectrophoretic forces has been demonstrated in this research. Firstly, principles of dielectrophoresis are reviewed in details and theoretical models of dielectrophoretic forces under different conditions are numerically simulated. Several important parameters including (1) electric filed distributions of traveling waves dielectrophoresis, (2) force distributions of positive and negative dielectrophoretic forces, (3) traveling-wave dielectrophoretic forces, and (4) trace of the cells at different initial positions have been investigated systematically.
The microchips are fabricated on soda-lime glass substrates using MEMS technologies. Microelectrode arrays with different pitches and geometry are designed and fabricated to evaluate the performance of the chips. A simple and reliable method for packaging of the microchips using standard PCI slots has been proposed. The bonding pads on the chip substrates can be directly connected to the attached pins in the slot such that time-consuming wire bonding procedures can be eliminated.
Finally, polystyrene beads and cells are tested using the microchip devices under different manipulation modes. The relation of particle velocity in terms of electric filed, particle size and electrode pitch is verified. Experimental data are highly consistent with theoretical models. Several novel manipulation modes have been demonstrated. The outcomes of this study could have a substantial impact on the development of bio-analytical systems using dielectrophoretic forces.
1. H. A. Pohl, “Dielectrophoresis,” Cambridge University Press, Cambridge, 1978.
2. S. Masuda, M. Washizu, I. Kawabata, ”Movement of Blood Cells in Liquid by Nonuniform Traveling Field,” IEEE Transactions on Industry Applications, Vol. 24, No. 2, pp. 217-223, 1988.
3. S. Masuda, M. Washizu, T. Nanba, “Novel Method of Cell Fusion in Field Constriction Area in Fluid Integrated Circuit,” IEEE Transactions on Industry Applications, Vol. 25, No. 4, pp. 732-737, 1989.
4. M. Washizu, T. Nanba, S. Masuda, “Handling of Biological Cells Using Fluid Integrated Circuit,” IEEE Transactions on Industry Applications, Vol. 25, No. 4, pp. 352-358, 1990.
5. G. Fuhr, R. Hagedorn, T. Muller, “Linear Motion of Dielectric Particles and Living Cells in Microfabricated Structures Induced by Traveling Electric Fields,” Proceeding of IEEE MEMS, pp. 259-264, 1991.
6. M. Washizu, “Manipulation of Biological Objects in Micromachined Structures,” Proceeding of IEEE MEMS, pp. 196-201, 1992.
7. D. C. Chang, B. M. Chassy, J. A. Saunders, A. E. Sowers, “Guide to Electroporation and Electrofusion,” ACADEMIC Press, San Diego, 1992.
8. X. B. Wang, Y. Huang, J. P. H. Burt, G. H. Markx, R. Pethig, “Selective Dielectrophoretic Confinement of Bioparticles in Potential Energy Wells,” Journal of Physics D: Applied Physics, Vol. 26, pp. 1278-1285, 1993.
9. Y. Huang, X. B. Wang, J. A. Tame, R. Pethig, “Electrokinetic Behaviour of Colloidal Particles in Travelling Electric Fields: Studies Using Yeast Cells,” Journal of Physics D: Applied Physics, Vol. 26, pp. 1528-1535, 1993.
10. X. B. Wang, Y. Huang, F. F. Becker, P. R. C. Gascoyne, “A Unified Theory of Dielectrophoresis and Travelling Wave Dielectrophoresis,” Journal of Physics D: Applied Physics, Vol. 27, pp. 1571-1574, 1994.
11. Brum, McKane, karp, “Biology Fundamentals,” John Wiley & Sons Press, New York, pp. 46-64, 1995.
12. M. P. Hughes, R. Pethig, X. B. Wang, “Dielectrophoretic Forces on Particles in Travelling Electric Fields,” Journal of Physics D: Applied Physics, Vol. 28, pp. 474-482, 1995.
13. X. B. Wang, M. P. Hughes, Y. Huang, F. F. Becker, P. R. C. Gascoyne, “Non-uniform Spatial Distributions of Both the Magnitude and Phase of AC Electric Fields Determine Dielectrophoretic Forces,” Biochimica et Biophysica Acta, Vol. 1243, pp. 185-194, 1995.
14. M. S. Talary, J. P. H. Burt, J. A. Tame, R. Pethig, “Electromanipulation and Separation of Cells Using Travelling Electric Fields,” Journal of Physics D: Applied Physics, Vol. 29, pp. 2198-2203, 1996.
15. S. W. Lee, Y. W. Kim, Y. K. Kim, “Determination of Dielectric Constant of Dielectric Particles Using Negative Dielectrophoresis,” IEEE Annual Report – Electrical Insulation and Dielectric Phenomena, pp. 241-244, 1996.
16. M. Madou, “Fundamentals of Microfabrication,” CRC Press, 1997.
17. H. Morgan, N. G. Green, M. P. Hughes, W. Monaghan, T. C. Tan, “Large-area Travelling-wave Dielectrophoresis Particle Separator,” Journal of Micromechanics and Microengineering, Vol. 7, pp. 65-70, 1997.
18. R. Pethig, G. H. Markx, “Applications of Dielectrophoresis in Biotechnology,” TIBTECH, Vol. 15, pp. 426-432, 1997.
19. X. B. Wang, Y. Huang, P. R. C. Gascoyne, F. F. Becker, “Dielectrophoretic Manipulation of Particles,” IEEE Transactions on Industry Applications, Vol. 33, No. 3, pp. 660-669, 1997.
20. K. L. Chan, N. G. Green, M. P. Hughes, H. Morgan, “Cellular Characterization and Separation: Dielectrophoretically Activated Cell Sorting,” Proceeding of IEEE Engineering in Medicine and Biology Society, Vol. 20, No. 6, pp. 2953-2956, 1998.
21. J. Rousselet, G. H. Markx, R. Pethig, “Separation of Erythrocytes and Latex Beads by Dieletrophoretic Levitation and Hyperlayer Field-Flow Fractionation,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 140, pp. 209-216, 1998.
22. A. Desai, S. W. Lee, Y. C. Tai, “A MEMS Electrostatic Particle Transportation System,” Sensors and Actuators A: Physical, Vol. 73, pp. 37-44, 1999.
23. T. Schnelle, T. Muller, R. Hagedorn, A. Voigt, G. Fuhr, “Single Micro Electrode Dielectrophoretic Tweezers for Manipulation of Suspended Cells and Particles,” Biochimica et Biophysica Acta, Vol. 1428, pp. 99-105, 1999.
24. S. W. Lee, Y. C. Tai, “A Micro Cell Lysis Devices,” Sensors and Actuators A: Physical, Vol. 73, pp. 74-79, 1999.
25. J. Yang, Y. Huang, X. B. Wang, F. F. Becker, P. R. C. Gascoyne, “Cell Separation on Microfabricated Electrodes Using Dielectrophoretic / Gravitational Field-Flow Fractionation,” Analytical Chemistry, Vol. 71, No. 5, pp. 911-918, 1999.
26. L. Cui, H. Morgan, “Design and Fabrication of Travelling Wave Dielectrophoresis Structures,” Journal of Micromechanics and Microengineering, Vol. 10, pp. 72-79, 2000.
27. X. B. Wang, J. Yang, Y. Huang, J. Vykoukal, F. F. Becker, P. R. C. Gascoyne, “Cell Separation by Dielectrophoretic Field-Flow Frationatuon,” Analytical Chemistry, Vol. 72, No. 4, pp. 832-839, 2000.
28. W. Michael Arnold, “Positioning and Levitation Media for the Separation of Biological Cells,” IEEE Transactions on Industry Applications, Vol. 37, No. 5, pp. 1468-1475, 2001.
29. J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, H. Q. Gong, “Polymerization Optimization of SU-8 Photoresist and its Applications in Microfluidic Systems and MEMS,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 20-26, 2001.
30. C. H. Lin, G. B. Lee, B. W. Chang, G. L. Chang, “A New Fabrication Process of Ultrathick Microfluidic Microstructures Utilizing SU-8 Photoresist,” Journal of Micromechanics and Microengineering, 2002.
31. Data Sheet for NANOTM SU-8 Negative Tone Photoresists, Formulations 50 & 100, released by MICRO-CHEM. Corp.
32. 莊達人, “VLSI製造技術,” 高立圖書, 台北, 1997。