| 研究生: |
翁國哲 Weng, Kuo-Che |
|---|---|
| 論文名稱: |
臺灣車輛電動化政策下機車報廢資源物質流向與永續利用之研究 Material Flow and Sustainable Utilization of End-of-life Motorcycles under Taiwan's Vehicle Electrification Policy |
| 指導教授: |
林心恬
Lin, Hsin-Tien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 報廢機車處理 、資源物質流 、回收程序改善 、資源永續利用 |
| 外文關鍵詞: | End-of-life motorcycle management, resource material flow, recycling process improvement, sustainable resource utilization |
| 相關次數: | 點閱:52 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在台灣推行機車電動化政策之下,報廢機車的種類由油轉電的過程將對機車回收產業造成衝擊。本研究透過先前研究建立的機車零件清單、ISO22628和UNIFE兩種回收率計算方法,以及實地調查報廢機車處理廠建立三種不同的回收程度情景以計算再使用與回收率(Reuse and recycling rate, RR rate)和再使用與再生利用(Reuse and recovery rate, RRR rate)並和歐盟廢車輛指令的標準進行比較,以及計算塑膠回收率來對比未來的法規要求。另外針對2022至2050年間台灣報廢電動與燃油機車的物質流進行分析,從各回收過程的節點檢視台灣報廢機車處理的改善方向。
在考量台灣現況的BAU (Business as usual) 情景中電動與燃油機車達成了67.5%和82.5%的RR rate,電動機車中的鋰電池和電子零件,以及兩種機車中的複合塑膠零件,是無法進一步提升RR rate的主要障礙。儘管兩種機車大於25%目標的塑膠回收率的結果顯示,在台灣推行歐盟廢車輛指令對於新車回收塑膠使用率的新規範是可行的,但在回收材料的品質不確定性之下。仍要積極進一步提升塑膠的回收率。
台灣報廢機車的物質流回收節點分析顯示,在台灣的回收法規的環境下,報廢機車零件的拆解程度已相當高,且材料回收主要來自人工拆解,但仍有許多拆解的零件最終仍以能源回收處理。在95% RRR rate的目標相較於RR rate容易達成的狀況下,要建立機車製造商與回收處理業者間的緊密合作,建立標準的拆解回收流程,以確保獲得更高品質的回收材料來提升RR rate。
Under Taiwan's policy of electrifying motorcycles, the transition from combustion engine(CEM) to electric motorcycles(EM) will impact the motorcycle recycling industry. This study utilizes a list of motorcycle parts established by previous research, two recycling rate calculation methods (ISO22628 and UNIFE), and field surveys of motorcycle recycling facilities to establish three different recycling level scenarios. These scenarios are used to calculate the Reuse and Recycling Rate (RR rate) and Reuse and Recovery Rate (RRR rate), compare them with EU directive 2000/53/EC, and calculate the recycling rate of plastics to meet future regulatory requirements. Additionally, the study analyzes the material flow of end-of-life (EoL) EM and CEM in Taiwan from 2022 to 2050, examining improvements for the recycling process at various stages.
Considering the current situation in Taiwan under the BAU scenario, EM and CEM achieved RR rates of 67.5% and 82.5%, respectively. The lithium batteries and electronic components in electric motorcycles, along with composite plastic parts in both types of motorcycles, are major obstacles to further increasing the RR rate. Although the results for the recycling rate of plastics exceeding the 25% target indicate that implementing the updated Directive 2000/53/EC for new motorcycle recycled plastic usage in Taiwan is feasible, the uncertainty of recycled material quality remains a challenge that necessitates further enhancement of plastic recycling rates.
The material flow analysis of EoL motorcycles in Taiwan shows that under Taiwan’s recycling regulations, the disassembly level of motorcycle parts is already quite high, with material recycling primarily from manual disassembly. However, many disassembled parts still end up being processed for energy recovery. Given that achieving the 95% RRR rate goal is easier than the RR rate, it is necessary to establish close cooperation between motorcycle manufacturers and recycling processors to standardize the disassembly and recycling process, ensuring the acquisition of higher quality recycled materials to enhance the RR rate.
1. Bekel, K., & Pauliuk, S. (2019). Prospective cost and environmental impact assessment of battery and fuel cell electric vehicles in Germany. The International Journal of Life Cycle Assessment, 24(12), 2220–2237. https://doi.org/10.1007/s11367-019-01640-8
2. Belboom, S., Lewis, G., Bareel, P.-F., & Léonard, A. (2016). Life cycle assessment of hybrid vehicles recycling: Comparison of three business lines of dismantling. Waste Management, 50, 184–193. https://doi.org/10.1016/j.wasman.2016.02.007
3. Berzi, L., Delogu, M., Pierini, M., & Romoli, F. (2016). Evaluation of the end-of-life performance of a hybrid scooter with the application of recyclability and recoverability assessment methods. Resources, Conservation and Recycling, 108, 140–155. https://doi.org/10.1016/j.resconrec.2016.01.013
4. Bhari, B., Yano, J., & Sakai, S. (2021). Comparison of end-of-life vehicle material flows for reuse, material recycling, and energy recovery between Japan and the European Union. Journal of Material Cycles and Waste Management, 23(2), 644–663. https://doi.org/10.1007/s10163-020-01154-8
5. Brunner, P. H., & Rechberger, H. (2016). Handbook of Material Flow Analysis: For Environmental, Resource, and Waste Engineers, Second Edition (2nd ed.). CRC Press. https://doi.org/10.1201/9781315313450
6. Buekens, A., & Zhou, X. (2014). Recycling plastics from automotive shredder residues: A review. Journal of Material Cycles and Waste Management, 16(3), 398–414. https://doi.org/10.1007/s10163-014-0244-z
7. Chen, K., Huang, S., & Lian, I. wei. (2010). The development and prospects of the end-of-life vehicle recycling system in Taiwan. Waste Management, 30(8), 1661–1669. https://doi.org/10.1016/j.wasman.2010.03.015
8. Cossu, R., & Lai, T. (2015). Automotive shredder residue (ASR) management: An overview. Waste Management, 45, 143–151. https://doi.org/10.1016/j.wasman.2015.07.042
9. Diener, D. L., & Tillman, A.-M. (2016). Scrapping steel components for recycling—Isn’t that good enough? Seeking improvements in automotive component end-of-life. Resources, Conservation and Recycling, 110, 48–60. https://doi.org/10.1016/j.resconrec.2016.03.001
10. Directive 2000/53/EC. (2000). 53/EC of the European Parliament and of the Council of 18 September 2000 on end-of life vehicles. Official Journal of the European Union, L Series.
11. EPA, Taiwan. (2020). 2020 Recycling Fund Management Board Business Report.
12. Eurostat. (2023). End-of-life vehicle statistics. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=End-of-life_vehicle_statistics&oldid=555195#Compliance_with_targets_on_reuse.2Frecycling_and_reuse.2Frecovery_for_end-of-life_vehicles
13. Gu, F., Guo, J., Zhang, W., Summers, P. A., & Hall, P. (2017). From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study. Science of The Total Environment, 601–602, 1192–1207. https://doi.org/10.1016/j.scitotenv.2017.05.278
14. Hawkins, T. R., Singh, B., Majeau-Bettez, G., & Strømman, A. H. (2013). Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. Journal of Industrial Ecology, 17(1), 53–64. https://doi.org/10.1111/j.1530-9290.2012.00532.x
15. Honda motors. (2011). Honda motors, 2011. Environmental annual report [WWW Document]. Honda Global. https://global.honda/en/
16. ISO, 2002. ISO 22628:2002 – Road vehicles – Recyclability and recoverability Calculation method. (2002). ISO. https://www.iso.org/standard/35061.html
17. Jang, Y.-C., Choi, K., Jeong, J.-H., Kim, H., & Kim, J.-G. (2022). Recycling and Material-Flow Analysis of End-of-Life Vehicles towards Resource Circulation in South Korea. Sustainability, 14(3), 1270. https://doi.org/10.3390/su14031270
18. Joung, H.-T., Cho, S.-J., Seo, Y.-C., & Kim, W.-H. (2007). Status of recycling end-of-life vehicles and efforts to reduce automobile shredder residues in Korea. Journal of Material Cycles and Waste Management, 9(2), 159–166. https://doi.org/10.1007/s10163-007-0181-1
19. Kamran, M., Raugei, M., & Hutchinson, A. (2021). A dynamic material flow analysis of lithium-ion battery metals for electric vehicles and grid storage in the UK: Assessing the impact of shared mobility and end-of-life strategies. Resources, Conservation and Recycling, 167, 105412. https://doi.org/10.1016/j.resconrec.2021.105412
20. Khalid, M. Y., Arif, Z. U., Ahmed, W., & Arshad, H. (2022). Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials. Sustainable Materials and Technologies, 31, e00382. https://doi.org/10.1016/j.susmat.2021.e00382
21. Khodier, A., Williams, K., & Dallison, N. (2018). Challenges around automotive shredder residue production and disposal. Waste Management, 73, 566–573. https://doi.org/10.1016/j.wasman.2017.05.008
22. Korea Ministry of Environment. (2013). Enforcement Regulations for the Act on Resource Circulation of Electrical and Electronic Equipment and Vehicles, Article 23; Korea Ministry of Environment: Sejong, Korea.
23. Koroma, M. S., Costa, D., Philippot, M., Cardellini, G., Hosen, M. S., Coosemans, T., & Messagie, M. (2022). Life cycle assessment of battery electric vehicles: Implications of future electricity mix and different battery end-of-life management. Science of The Total Environment, 831, 154859. https://doi.org/10.1016/j.scitotenv.2022.154859
24. Krauklis, A. E., Karl, C. W., Gagani, A. I., & Jørgensen, J. K. (2021). Composite Material Recycling Technology—State-of-the-Art and Sustainable Development for the 2020s. Journal of Composites Science, 5(1), 28. https://doi.org/10.3390/jcs5010028
25. METI & MOE. (2018). Implementing status of the ELV recycling Act.46th Joint Committee of Industrial Structure Council and Central Environment Council (in Japanese).
26. Ministry of Environment. (2021). 110 年度廢機動車輛回收處理體系 管理精進計畫.
27. Ministry of Environment. (2024). 空氣污染物排放量清冊. https://air.moenv.gov.tw/EnvTopics/AirQuality_6.aspx
28. Ministry of the Interior. (2023). Statistical Table of Annual Export Quantities for Used Motorcycles and Motorcycle Engines.
29. Ministry of Transportation and Communications. (2023, December). 機動車輛登記數. https://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&funid=a3301
30. National Development Council. (2022). Taiwan’s Pathway to Net-Zero Emissions in 2050 (臺灣2050淨零排放路徑及策略). https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76
31. Peters, D. R., Schnell, J. L., Kinney, P. L., Naik, V., & Horton, D. E. (2020). Public Health and Climate Benefits and Trade-Offs of U.S. Vehicle Electrification. GeoHealth, 4(10), e2020GH000275. https://doi.org/10.1029/2020GH000275
32. Saboori, B., Sapri, M., & bin Baba, M. (2014). Economic growth, energy consumption and CO2 emissions in OECD (Organization for Economic Co-operation and Development)’s transport sector: A fully modified bi-directional relationship approach. Energy, 66, 150–161. https://doi.org/10.1016/j.energy.2013.12.048
33. Sato, F. E. K., Furubayashi, T., & Nakata, T. (2019). Application of energy and CO2 reduction assessments for end-of-life vehicles recycling in Japan. Applied Energy, 237, 779–794. https://doi.org/10.1016/j.apenergy.2019.01.002
34. Schneider, F., Sebastián Castillo Castro, D., Weng, K.-C., Shei, C.-H., & Lin, H.-T. (2023). Comparative Life Cycle Assessment (LCA) on battery electric and combustion engine motorcycles in Taiwan. Journal of Cleaner Production, 406, 137060. https://www.sciencedirect.com/science/article/pii/S0959652623012180
35. Shafique, M., Azam, A., Rafiq, M., & Luo, X. (2022). Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong. Research in Transportation Economics, 91, 101112. https://doi.org/10.1016/j.retrec.2021.101112
36. The European Parliament and of the Council. (2023, July 13). End-of-Life Vehicles—European Commission. https://environment.ec.europa.eu/topics/waste-and-recycling/end-life-vehicles_en
37. Tsai, C.-Y., Chang, T.-H., & Hsieh, I.-Y. L. (2023). Evaluating vehicle fleet electrification against net-zero targets in scooter-dominated road transport. Transportation Research Part D: Transport and Environment, 114, 103542. https://doi.org/10.1016/j.trd.2022.103542
38. UNIFE. (2013). UNI-LCA-001:00 – Recyclability and Recoverability Calculation Method – Railway Rolling Stock. UNIFE. https://www.unife.org/
39. Vermeulen, I., Van Caneghem, J., Block, C., Baeyens, J., & Vandecasteele, C. (2011). Automotive shredder residue (ASR): Reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals’ valorisation. Journal of Hazardous Materials, 190(1), 8–27. https://doi.org/10.1016/j.jhazmat.2011.02.088
40. Wang, H., Zhang, S., Li, B., Pan, D., Wu, Y., & Zuo, T. (2017). Recovery of waste printed circuit boards through pyrometallurgical processing: A review. Resources, Conservation and Recycling, 126, 209–218. https://doi.org/10.1016/j.resconrec.2017.08.001
41. Yano, J., Muroi, T., & Sakai, S. (2016). Rare earth element recovery potentials from end-of-life hybrid electric vehicle components in 2010–2030. Journal of Material Cycles and Waste Management, 18(4), 655–664. https://doi.org/10.1007/s10163-015-0360-4
42. Yano, J., Xu, G., Liu, H., Toyoguchi, T., Iwasawa, H., & Sakai, S. (2019). Resource and toxic characterization in end-of-life vehicles through dismantling survey. Journal of Material Cycles and Waste Management, 21(6), 1488–1504. https://doi.org/10.1007/s10163-019-00902-9
43. 交通部運輸研究所. (2018, November 12). 運輸部門溫室氣體減量第二階段策略精進研究 [文字]. 交通部運輸研究所; 交通部運輸研究所. https://www.iot.gov.tw/cp-78-206325-ec528-1.html
44. 工業技術研究院. (2024, January 4). 能源補充設施與電動機車補助分布統計. 經濟部產業發展署電動機車產業推動計畫委辦; 電動車輛產業網--中文首頁. https://www.lev.org.tw/subsidy/sequelStations
45. 油價資訊管理與分析系統. (2024, February 1). 加油站經營實體統計. https://www2.moeaea.gov.tw/oil111/Dealer/BusinessEntity
校內:2029-07-01公開