簡易檢索 / 詳目顯示

研究生: 蔡佶穎
Tsai, Chi-Ying
論文名稱: 利用原子力顯微鏡探針之侷域陽極氧化技術發展石墨烯奈米元件
Local Anodic Oxidation by Atomic Force Microscope Probe Developed for Graphene Nanodevice
指導教授: 吳忠霖
Wu, Chung-Lin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 52
中文關鍵詞: 石墨烯碳化矽基板侷域陽極氧化掃描式光電子顯微術金屬─半導體─金屬結構
外文關鍵詞: Graphene, Silicon Carbide Substrates, Local Anodic Oxidation, Photoelectron Spectroscopy, Metal-Semiconductor-Metal Structure
相關次數: 點閱:91下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究成長在碳化矽(SiC)基板上的石墨烯,包含存在緩衝層(Buffer layer)的MLG(Monolayer Graphene)與無緩衝層的QFMLG(Quasi-Free-Standing Monolayer Graphene),以原子力顯微鏡(AFM)對石墨烯表面進行侷域陽極氧化(LAO)。經LAO後之區域以拉曼光譜和光電子能譜測量,發現不同的基板-石墨烯介面對結果有極大的影響:QFMLG樣品中碳化矽基板被氧化成二氧化矽(SiO2),石墨烯並未被氧化而是變成與基板有較強鍵結的緩衝層;MLG樣品中基板氧化成二氧化矽,石墨烯氧化成石墨烯氧化物(Graphene Oxide)。利用LAO劃出氧化方框後,以鎢針對框內-框外進行電流-電壓量測,發現QFMLG樣品上的系統具有整流特性,此一結果可用兩個背靠背(back-to-back)串聯的蕭特基位障(Schottky barrier)形成金屬─半導體─金屬結構來解釋,由LAO劃線形成封閉區域使得框內外的石墨烯功函數不同,產生內外側不同的蕭特基位障。LAO參數可改變蕭特基位障的差異,氧化的程度越高,系統整流的效果越好,實驗中電流的開關比(On-Off ratio)最高達到441.5。

    In this study, local anodic oxidation (LAO) of graphene on SiC substrates is carried out using atomic force microscope (AFM). From Raman spectroscopy and photoelectron spectroscopy (PES), LAO regions of graphene on SiC substrates with and without buffer layer (i.e., Monolayer Graphene, MLG and Quasi-Free-Standing Monolayer Graphene, QFMLG, respectively) have great differences: For QFMLG sample, only SiC substrate is oxidized into SiO2, while graphene exhibit strong interaction with the substrate and become buffer layer. On the other hand, the oxidation of both graphene and SiC substrate were observed in MLG sample. After LAO nano-patterning, open square patterns were made and current-voltage measurements are conducted using W-tips which placed inside and outside of the square patterns. Systems on the QFMLG sample reveal rectifying characteristic, which can be modeled by a metal-semiconductor-metal structure involving two back-to-back Schottky barriers. LAO patterning results in work function differences between inner and outer graphene, which lead to different Schottky barriers. These differences can be tuned by changing the LAO parameters, showing that the rectifying ability increased with the degree of oxidation. The current on-off ratio achieved 441.5 in this study.

    第一章 緒論 1 1.1 前言 1 1.2 石墨烯 2 1.3 碳化矽基板上的石墨烯 5 1.4 局部陽極氧化 (Local Anodic Oxidation) 8 第二章 儀器原理與機制 9 2.1 原子力顯微鏡 (Atomic Force Microscope) 9 2.2 掃描式電子顯微鏡 (Scanning Electron Microscope) 11 2.3 掃描式光電子顯微術 (Scanning Photoelectron Microscopy) 13 2.4 拉曼光譜學 (Raman Spectroscopy) 15 第三章 實驗方法與量測 17 3.1 碳化矽基板上的石墨烯樣品 17 3.2 石墨烯的局部陽極氧化 19 3.3 掃描式光電子能譜量測 21 3.4 拉曼光譜量測 22 3.5 電流-電壓特性量測 24 第四章 實驗結果與討論 25 4.1 SEM與AFM圖像分析 25 4.2 光電子能譜分析 29 4.3 拉曼光譜分析 36 4.4 石墨烯奈米圖樣 38 4.4.1 氧化方框 38 4.4.2 電流-電壓曲線分析 42 第五章 結論 48 參考文獻 49

    [1] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat Mater, 6 (2007) 183-191.
    [2] J.M.P. Alaboson, Q.H. Wang, J.A. Kellar, J. Park, J.W. Elam, M.J. Pellin, M.C. Hersam, Conductive Atomic Force Microscope Nanopatterning of Epitaxial Graphene on SiC(0001) in Ambient Conditions, Advanced Materials, 23 (2011) 2181-2184.
    [3] W. Xuan, L. Dong-Weon, Single layer graphene nano-patterning based on local anodic lithography in ambient conditions, in: Nanotechnology (IEEE-NANO), 2013 13th IEEE Conference on, 2013, pp. 1026-1029.
    [4] C. Riedl, A.A. Zakharov, U. Starke, Precise in situ thickness analysis of epitaxial graphene layers on SiC(0001) using low-energy electron diffraction and angle resolved ultraviolet photoelectron spectroscopy, Applied Physics Letters, 93 (2008) -.
    [5] C. Riedl, C. Coletti, T. Iwasaki, A.A. Zakharov, U. Starke, Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation, Physical Review Letters, 103 (2009) 246804.
    [6] 吳亦凡, 以原子力顯微鏡製作奈米圖像於石墨烯, 成功大學物理學系學位論文, (2013).
    [7] U.o. Manchester, University of manchester graphene website, see http://www.graphene.manchester.ac.uk/, (2014).
    [8] 樊曉峰, 郭哲來, 單層石墨烯的計算物理研究之介紹, 物理雙月刊, 33 (2011) 214-235.
    [9] A.C. Neto, F. Guinea, N. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Reviews of modern physics, 81 (2009) 109.
    [10] 林永昌, 呂俊頡, 鄭碩方, 邱博文, 石墨烯之電子能帶特性與其元件應用, 物理雙月刊, 33 (2011) 191-202.
    [11] G.W. Semenoff, Condensed-Matter Simulation of a Three-Dimensional Anomaly, Physical Review Letters, 53 (1984) 2449-2452.
    [12] F. Xia, D.B. Farmer, Y.-m. Lin, P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature, Nano letters, 10 (2010) 715-718.
    [13] Y. Lu, B. Goldsmith, D.R. Strachan, J.H. Lim, Z. Luo, A. Johnson, High‐On/Off‐Ratio Graphene Nanoconstriction Field‐Effect Transistor, Small, 6 (2010) 2748-2754.
    [14] A.S. Bakin, SiC homoepitaxy and heteroepitaxy, International journal of high speed electronics and systems, 15 (2005) 747-780.
    [15] K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide, Nature materials, 8 (2009) 203-207.
    [16] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, Electronic confinement and coherence in patterned epitaxial graphene, Science, 312 (2006) 1191-1196.
    [17] T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene, Science, 313 (2006) 951-954.
    [18] C. Riedl, U. Starke, J. Bernhardt, M. Franke, K. Heinz, Structural properties of the graphene-SiC (0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces, Physical Review B, 76 (2007) 245406.
    [19] J.D. Emery, B. Detlefs, H.J. Karmel, L.O. Nyakiti, D.K. Gaskill, M.C. Hersam, J. Zegenhagen, M.J. Bedzyk, Chemically Resolved Interface Structure of Epitaxial Graphene on SiC (0001), Physical review letters, 111 (2013) 215501.
    [20] S. Oida, F. McFeely, J. Hannon, R. Tromp, M. Copel, Z. Chen, Y. Sun, D. Farmer, J. Yurkas, Decoupling graphene from SiC (0001) via oxidation, Physical Review B, 82 (2010) 041411.
    [21] M. Ostler, F. Fromm, R.J. Koch, P. Wehrfritz, F. Speck, H. Vita, S. Böttcher, K. Horn, T. Seyller, Buffer layer free graphene on SiC (0001) via interface oxidation in water vapor, Carbon, 70 (2014) 258-265.
    [22] R. Garcı́a, M. Calleja, H. Rohrer, Patterning of silicon surfaces with noncontact atomic force microscopy: Field-induced formation of nanometer-size water bridges, Journal of Applied Physics, 86 (1999) 1898-1903.
    [23] N.A. Geisse, AFM and combined optical techniques, Materials today, 12 (2009) 40-45.
    [24] G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope, Physical review letters, 56 (1986) 930.
    [25] V.J. Morris, A.R. Kirby, A.P. Gunning, Atomic force microscopy for biologists, World Scientific, 1999.
    [26] J. Cazaux, From the physics of secondary electron emission to image contrasts in scanning electron microscopy, Journal of electron microscopy, 61 (2012) 261-284.
    [27] 賴英煌, 邱雯藝, 洪偉修, 同步輻射 X-ray 光電子能譜在表面化學之研究, CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) SEP, 60 (2002) 381-390.
    [28] 陳家浩, 從光電效應到光電子顯微術, 物理雙月刊, 27 (2005) 666-669.
    [29] A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature nanotechnology, 8 (2013) 235-246.
    [30] L. Malard, M. Pimenta, G. Dresselhaus, M. Dresselhaus, Raman spectroscopy in graphene, Physics Reports, 473 (2009) 51-87.
    [31] H. Watanabe, T. Hosoi, Fundamental Aspects of Silicon Carbide Oxidation, (2012).
    [32] F. Fromm, M. Oliveira Jr, A. Molina-Sanchez, M. Hundhausen, J. Lopes, H. Riechert, L. Wirtz, T. Seyller, Contribution of the buffer layer to the Raman spectrum of epitaxial graphene on SiC (0001), New Journal of Physics, 15 (2013) 043031.
    [33] K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud'Homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets, Nano letters, 8 (2008) 36-41.
    [34] S. Goler, C. Coletti, V. Piazza, P. Pingue, F. Colangelo, V. Pellegrini, K.V. Emtsev, S. Forti, U. Starke, F. Beltram, Revealing the atomic structure of the buffer layer between SiC (0001) and epitaxial graphene, Carbon, 51 (2013) 249-254.
    [35] Z. Luo, P.M. Vora, E.J. Mele, A.C. Johnson, J.M. Kikkawa, Photoluminescence and band gap modulation in graphene oxide, Applied physics letters, 94 (2009) 111909.
    [36] H. Elhadidy, J. Sikula, J. Franc, Symmetrical current–voltage characteristic of a metal–semiconductor–metal structure of Schottky contacts and parameter retrieval of a CdTe structure, Semiconductor Science and Technology, 27 (2012) 015006.
    [37] S.M. Sze, Physics of Semiconductor Devices, Wiley, (2007) chapter 3.
    [38] L. Hutin, C. Le Royer, C. Tabone, V. Delaye, F. Nemouchi, F. Aussenac, L. Clavelier, M. Vinet, Schottky barrier height extraction in ohmic regime: Contacts on fully processed GeOI substrates, Journal of The Electrochemical Society, 156 (2009) H522-H527.
    [39] Z. Zhang, K. Yao, Y. Liu, C. Jin, X. Liang, Q. Chen, L.M. Peng, Quantitative analysis of current–voltage characteristics of semiconducting nanowires: decoupling of contact effects, Advanced functional materials, 17 (2007) 2478-2489.
    [40] Z. Zhang, C. Jin, X. Liang, Q. Chen, L.-M. Peng, Current-voltage characteristics and parameter retrieval of semiconducting nanowires, Applied physics letters, 88 (2006) 073102.

    下載圖示 校內:2019-09-01公開
    校外:2019-09-01公開
    QR CODE