簡易檢索 / 詳目顯示

研究生: 鍾覲羽
Chung, Chin-Yu
論文名稱: 含明膠微粒之聚草酸碳酸酯微針做為一雙重藥物之釋放系統應用於經皮傳輸親疏水性藥物
PCOX Microneedles Containing Gelatin Microspheres as a Dual-Drug Release System for Transdermal Delivery of Hydrophilic and Lipophilic Drugs
指導教授: 陳美瑾
Chen, Mei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 87
中文關鍵詞: 雙重藥物釋放聚草酸碳酸酯膨潤驅動釋放高分子微針
外文關鍵詞: dual drug release, PCOX, swelling-triggered release, polymer microneedles
相關次數: 點閱:113下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發出能同時釋放親疏水性雙重藥物於皮膚之鑲嵌式高分子微針,利用親脂性之聚草酸碳酸酯(polycarbonate-co-polyoxalate, PCOX)做為微針主體並包覆疏水性藥物,微針中所含的交聯型明膠微米粒子則包覆親水性藥物,後端再結合水溶性之高分子聚乙烯吡咯烷酮/聚乙烯醇[poly(N-vinylpyrrolidone)/poly(vinyl alcohol), PVP/PVA]做為支撐陣列貼片。PVP/PVA支撐陣列可提供皮膚穿刺時的機械強度,使微針完整的刺入皮膚,並在接觸到水份後溶解,僅留微針鑲嵌於皮膚中,持續的釋放藥物。當微針刺入皮膚時,明膠微粒可吸收皮膚中的組織液後快速膨潤並釋放親水性藥(尼羅藍,nile blue),同時造成微針崩解,加速疏水性藥(羅丹明,rhodamine 6G)的釋出,達到同時釋放雙重藥物於皮膚的效果。本研究利用W/O乳化聚合方式製備出明膠微粒,再以天然的交聯劑genipin進行交聯,交聯六小時之明膠微粒能在接觸水份後90秒內,快速膨脹至其粒徑的2倍(n = 10)。將吸附nile blue的微粒,以離心灌模的方式包覆於微針中,並以兩段式灌模法製針。由穿刺實驗證實,所製備之聚草酸碳酸酯微針具有足夠之強度可刺穿角質層,並鑲嵌於皮膚中,穿刺豬皮的深度約為1000微米。明膠微粒確實能在吸水後快速膨潤,使微針在150秒內完全崩解。體外釋放實驗發現,微粒所包覆之nile blue在14天釋放約80 %,rhodamine 6G約在50天達到100%釋放;而未包覆微粒之微針在50天僅釋放約75 %的疏水性藥物,由此可證明微粒膨潤所造成的微針崩解,確實可加速藥物由微針釋放。體內釋放實驗證實,微針能於大鼠皮膚內能逐漸降解,nile blue的螢光大約在第14天僅剩下25%,第21天則完全消失,而rhodamine 6G的螢光則可持續至少28天以上,且包覆微粒組別的放藥速度確實較未含微粒組快。以上結果證實,所開發之鑲嵌式聚草酸碳酸酯微針可同時傳輸親疏水性雙重藥物於皮膚中,具有緩釋藥物的能力,有潛力開發為一長效且雙效型的新一代經皮藥物傳輸系統。

    This study reports embeddable polycarbonate-co-polyoxalate (PCOX) microneedles (MNs) containing crosslinked gelatin microspheres (MPs) as a dual- drug transdermal delivery system for hydrophilic and hydrophobic drugs. In this system, hydrophobic model drugs, rhodamine 6G (Rh6G), was encapsulated within the MNs; whereas hydrophilic model drugs, nile blue, was loaded within the MPs. PCOX MNs were mounted to the top of a dissolvable poly(N- vinylpyrrolidone)/poly(vinyl alcohol) (PVP/PVA) supporting array, providing mechanical strength to fully insert the MNs into the skin. When inserted into the skin, the supporting array can be quickly dissolved by interstitial fluid, leaving the MNs within the skin for sustained drug delivery without requiring a transdermal patch. The gelatin MPs quickly swell to release nile blue because of contact with skin’s water. Such swelling will cause the MN disintegration, thus accelerating Rh6G release from the MNs. The gelatin MPs was prepared by utilizing W/O emulsion polymerization and then crosslinked with genipin solution for 6 h. When contact with water for 90 s, the diameter of the crosslinked MPs can swell to ~2 times their initial diameter (n = 10). The MNs were then prepared by filling a MN mold with nile blue-loaded MPs. These MNs have sufficient mechanical strength to be inserted into porcine and rat skins at a depth of 700~1000 μm. In vitro drug release study showed that nile blue can be quickly released from the MNs (~80% at Day 14). At Day 50, 100% of Rh6G was released from the group with MPs, whereas there is only 75% of Rh6G release from their counterpart. This indicated that MP swelling indeed enhances drug release from the MNs. Such release behavior can be also observed from the in vivo drug release study. These results demonstrated that the embeddable PCOX MNs with gelatin MPs, which enable to simultaneously release hydrophilic and hydrophobic drugs into the skin in a sustained manner, may be a new generation of transdermal delivery system.

    摘要 I Abstract II 致謝 VIII 目錄 IX 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1.1新一代經皮藥物傳輸系統:微針貼片 1 1.1.1 經皮給藥 1 1.1.2 微針貼片 2 1.1.3 高分子微針貼片現況 3 1.1.4藥物的控制釋放 4 1.2 本研究之微針材料 7 1.2.1 聚草酸碳酸酯(poly(carbonate-co-oxalate)s, PCOX)微針 7 1.2.2明膠微米粒子(Gelatin type A) 11 1.2.3 聚乙烯吡咯烷酮(Polyvinylpyrrolidone, PVP)及聚乙烯醇(Polyvinyl alcohol, PVA)支撐軸 14 1.3 模擬藥物(Model drug)介紹 16 1.3.1 羅丹明(Rhodamine 6G, Rh6G) 16 1.3.2 尼羅藍A (Nile blue A) 17 1.4 研究目的 18 第二章 實驗材料與方法 21 2.1實驗藥品與儀器設備 21 2.1.1實驗藥品、耗材與動物 21 2.1.2儀器設備 22 2.2鑲嵌式微針貼片 24 2.2.1 明膠微米粒子之製備 24 2.2.2聚草酸碳酸酯微針貼片之製備 25 2.2.3包藥量之分析 28 2.3明膠微粒膨潤與微針崩解測試 28 2.3.1 明膠微粒膨潤測試[13, 50, 51] 28 2.3.2 微針崩解測試[13] 28 2.4微針穿刺能力測試 29 2.4.1體外豬皮與活體鼠皮穿刺 29 2.4.2 皮膚穿刺之傷口癒合測試 30 2.5 微針藥物釋放測試 31 2.5.1 體外藥物釋放測試(Franz cell)[52, 53] 31 2.5.3 體內藥物釋放分析 32 2.5.4 體內微針降解分析 33 第三章 結果與討論 34 3.1鑲嵌式微針貼片 34 3.1.1 明膠微米粒子之製備 34 3.1.2 明膠微米粒子之膨潤測試 35 3.1.3聚草酸碳酸酯之微針貼片 38 3.1.4 包藥量之分析 40 3.2 明膠膨潤與微針崩解測試 41 3.2.1 微針崩解測試 41 3.3 微針穿刺能力測試 43 3.3.1體外豬皮與活體鼠皮穿刺 43 3.3.2皮膚傷口癒合測試 44 3.4 微針藥物釋放測試 46 3.4.1經皮藥物傳輸實驗(Franz cell) 46 3.4.2 體外藥物釋放測試(shaker) 49 3.4.3 活體體內藥物釋放分析 50 3.4.4 活體體內微針降解分析 52 第四章 結論 80 參考文獻 82

    [1] Waller DG, Renwick AG, Gruchy BS, George CF(1984), “The first pass metabolism of nifedipine in man.”, Br J Clin Pharmacol, 18, pp.951-954.
    [2] Matsuo K, Yokota Y, Zhai Y, Quan YS, Kamiyama F, Mukai Y(2012), “A low-invasive and effective transcutaneous immunization system using a novel dissolving microneedle array for soluble and particulate antigens.”, J Controlled Release, 161, pp.10-17.
    [3] Pegoraro C, MacNeil S, Battaglia G(2012), “Transdermal drug delivery: from micro to nano.”, Nanoscale, 4, pp.1881-1894.
    [4] Arora A, Prausnitz MR, Mitragotri S(2008), “Micro-scale devices for transdermal drug delivery.”, Int J Phytorem, 364, pp.227-236.
    [5] http://hica.jp/forum/cvlinekanri/jozaikinso/hifu-kaibo.htm
    [6] Mahony CO(2014), “Structural characterization and in-vivo reliability evaluation of silicon microneedles.” Biomed. Microdevices, 16, pp.333-343.
    [7] Davis SP, Martanto W et al.(2005), “Hollow metal microneedles for insulin delivery to diabetic rats.” IEEE Trans Biomed, 52, pp.909-915.
    [8] Lee JW, Park JH, Prausnitz MR(2008), “Dissolving microneedles for transdermal drug delivery.” Biomaterials, 29, pp.2113-2124.
    [9] American National Standards Institute, American National Standard for the safe use of lasers , FL 1993.
    [10] Bawa P, Pillay V, Choonara YE, Du Toit LC(2009), “Stimuli-responsive polymers and their applications in drug delivery.” Biomed Mater, pp.4-10.
    [11] Arruebo M, Fernandez-Pacheco R, Ibarra MR, Santamaria SJ(2007), “Magnetic nanoparticles for drug delivery.”, Nano Today, pp.2-22.
    [12] Schroeder A, Kost J , Barenholz Y(2009), “Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes.”, Chem Phys Lipids, 162, pp.1-16.
    [13] Ke CJ, Lin YJ, Hu YC, Chiang WL, Chen KJ, Yang WC, Liu HL, Fu CC, Sung HW(2012), “Multidrug release based on microneedle arrays filled with pH-responsive PLGA hollow microspheres.” Biomaterials, 33, pp.5156-5165.
    [14] Kearney MC, Brown S, McCrudden MTC, Brady AJ, Donnelly RF(2014), “Potential of microneedles in enhancing delivery of photosensitising agents for photodynamic therapy.” Photodiagn Photodyn Ther, 11, pp.459-466.
    [15] Kim M, Jung B, Park JH(2012), “Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin.” Biomaterials, 33, pp.668-678.
    [16] Weast RC(1980), “CRC Handbook of Chemistry and Physics.”, CRC Press Inc, Boca Raton, 61.
    [17] Pietro Tundo, Maurizio Selva(2002), “The Chemistry of Dimethyl Carbonate.” Chem Res, 35(9), pp.706-16.
    [18] 王慶印,王越,姚潔,王工應(2005),“天然氣化工”,30卷。
    [19] Holland SJ, Tighe BJ, Gould PL(1986), “Polymers for biodegradable medical devices.” J Control Rel, 4, pp.155.
    [20] Johnson RA, Shalaby SW(1994), “Effect of Structure on Properties of Absorbable Oxalate Polymers.”, American Chemical Society, Washington, DC.
    [21] Kim S, Seong K, Kim O, Seo H, Lee M, Khang G et al. (2010), “Polyoxalate Nanoparticles as a Biodegradable and Biocompatible Drug Delivery Vehicle.”, Biomacromolecules, 11, pp.555-560.
    [22] Sy JC, Seshadri G, Yang SC, Brown M, Oh T, Dikalov S, Murthy N, Davis ME(2008), “Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction.”, Nat Mater, 7(11), pp.863-869.
    [23] DiVincenzo GD, Ziegler DA(1980), “Metabolic fate of 1,4-cyclo[14C] hexanedimethanol in rats.”, Toxicol Appl Pharmacol, 52, pp.10-15.
    [24] 王文廣,陳向文,葉遠鋒,楊義滸,“聚己內酯降解塑料介紹”,第二屆中國國際生物降解塑料應用研討會會刊。
    [25] 潘祖仁(2007),“高分子化學(增強版)”,化學工業出版社,pp.307-309.
    [26] Park S, Yoon J, Bae S, Park M, Kang C, Ke Q, Lee D, Kang PM(2014), “Therapeutic use of H2O2-responsive anti-oxidant polymer nanoparticles for doxorubicin-induced cardiomyopathy.” Biomaterials, 35, pp.5944-5953.
    [27] Seong K, Seo H, Ahn W, Yoo D, Cho S, Khang G, Lee D(2011), “Enhanced cytosolic drug delivery using fully biodegradable poly(amino oxalate) particles.”, J Control Release, 152, pp.257-263.
    [28] Kim S, Park H, Song Y, Hong D, Kim O, Jo E, Khang G, Lee D(2011), “Reduction of oxidative stress by P-hydroxybenzyl alcohol-containing biodegradable polyoxalate nanoparticulate antioxidant.”, Biomaterials, 32, pp.3021-3029.
    [29] Kawaguehi K, Takev K, Yasuhiko Y(1983), Chem Pharm Bull, 31, pp.1400.
    [30] 劉孝文,陳志勇(2012),“以非光氣法合成脂肪族聚碳酸酯及其應用”,國立成功大學碩士論文。
    [31] Zdrahala RJ(1996), “Small Caliber Vascular Grafts.”, Journal of Biomater Applications, 11, pp.37.
    [32] Yang M, Zhang Z, Hahn C, Laroche G, King MW, Guidoin R(1999), “Totally implantable artificial hearts and left ventricular assist devices: selecting impermeable polycarbonate urethane to manufacture ventricles.”, Journal of Biomedical Materials Research, 48, pp.13-23.
    [33] 宋信文,陳松青(2003),“生物產業技術概論”,第二章。
    [34] 梁晃千(2000),“以天然交聯劑genipin交聯明膠的藥物制放微粒載體:體外與體內性質評估”,國立中央大學碩士論文。
    [35] Nickerson MT, Patel J, Heyd DV(2006), “Kinetic and mechanistic considerations in the gelation of genipin-crosslinked gelatin.”, Int J Biol Macromol, 39(4-5), pp.298-302.
    [36] Somers P, De-Somer F, Cornelissen M(2008), “Genipin blues: an alternative non-toxic crosslinker for heart valves?”, J Heart Valve Dis, 17(6), pp.682-688.
    [37] Yao CH, Liu BS, Chang CJ(2004), “Preparation of networks of gelatin and geni pin as degradable biomaterials.”, Materials Chemistry and Physics, 83(2-3), pp.204-208.
    [38] 劉雲,張傳杰,趙瑾朝,郭義,崔莉,朱平(2015),“明膠海藻酸鈉京尼平交聯和互穿網絡膜的製備與性能”,複合材料學報,32(4),pp.997-1006.
    [39] Inactive ingredients in FDA approved drugs. FDA/Center for drug evaluation and research, office of generic drugs, division of labeling and program support.
    [40] Robinson BV, Sullivan FM, Borzelleca JF, Schwartz SL. “A critical review of the kinetics and toxicology of polyvinylpyrrolidone (Povidone).”, CRC Press Book.
    [41] Katherine A Moga, Lissett R Bickford, Robert D Geil, Stuart S Dunn(2013), “Rapidly–Dissolvable Microneedle Patches Via a Highly Scalable and Reproducible Soft Lithography Approach,”, Adv Mater, 25, pp.5060-5066.
    [42] Fromageau J, Brusseau E, Vray D, Gimenez G, Delachartre P(2003), “Characterization of PVA cryogel for intravascular ultrasound elasticity imaging.”, IEEE T Ultrason Ferr, 50, pp.1318-1324.
    [43] Dixon JM, Taniguchi M, Lindsey JS(2005), “PhotochemCAD 2. A Refined Program with Accompanying Spectral Databases for Photochemical Calculations.”, Photochem Photobiol, 81, pp.212-213.
    [44] https://en.wikipedia.org/wiki/Rhodamine_6G
    [45] Jose, Jiney; Burgess, Kevin(2006), “Benzophenoxazine-based fluorescent dyes for labeling biomolecules.”, Tetrahedron, 62(48), pp.11021.
    [46] http://www.thermofisher.com/tw/zt/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html
    [47] 陳怡婷,顧野松(2007),“琥珀酸酐化明膠微球的製備及其包覆陽離子蛋白質之研究”,東海大學碩士論文。
    [48] Kawadkar J, Jain R, Kishore R, Pathak A, Chauhan MK(2013), “Formulation and evaluation of flurbiprofen-loaded genipin cross-linked gelatin microspheres for intra-articular delivery.”, Journal of Drug Targeting, 21, pp.200–210
    [49] Wei HJ, Yang HH, Chen CH, Lin WW, Chen SC, Lai PH, Chang Y, Sung HW(2007), “Gelatin microspheres encapsulated with a nonpeptide angiogenic agent, ginsenoside Rg 1 , for intramyocardial injection in a rat model with infarcted myocardium”, Journal of Controlled Release, 120, pp.27-34.
    [50] Solorio L, Zwolinski C, Lund AW, Farrell MJ, Stegemann JP(2010), “Gelatin microspheres crosslinked with genipin for local delivery of growth factors.”, J Tissue Eng Regen Med, 4, pp.514-523.
    [51] Lin YH, Liang HF, Chung CK, Chen MC, Sung HW(2005), “Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs.”, Biomaterials, 26, pp.2105–2113.
    [52] Ling MH, Chen MC(2013), “Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats.”, Acta Biomater, 9, pp.8952-8961.
    [53] Chen MC, Huang SF, Lai KY, Ling MH(2013), “Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination.”, Biomaterials, 34, pp.3077–3086.
    [54] Peattie RA, Rieke ER, Hewett EM, Fisher RJ, Shu XZ, Prestwich GD(2006), “Dual growth factor-induced angiogenesis in vivo using hyaluronan hydrogel implants.”, Biomaterials, 27, pp.1868–1875.
    [55] Bodmeier R, Chen HG, Paeratakul O(1989), “A novel-approach to the oral delivery of micro-particles or nanoparticles.”, Pharm Res, 6 (1989), pp.413–417.
    [56] Brooking J, Davis SS, Illum L(2001), “Transport of nanoparticles across the rat nasal mucosa.”, J Drug Target, 9, pp.267–279.

    下載圖示 校內:2021-02-04公開
    校外:2021-02-04公開
    QR CODE