簡易檢索 / 詳目顯示

研究生: 潘信宇
Pan, Hsin-Yu
論文名稱: 摻雜熱活化延遲發光材料實現高效率量子點發光二極體之研究
Investigation of Doping Thermally Activated Delayed Fluorescence Materials to Achieve High-Efficiency Quantum Dots Light-Emitting Diodes
指導教授: 蘇炎坤
Su, Yan-kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 104
中文關鍵詞: 量子點發光二極體熱活化延遲發光材料螢光共振能量轉移PVK
外文關鍵詞: quantum dot light emitting diode, fluorescence resonance energy transfer, thermally activated delayed fluorescence material, PVK
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出將熱活化延遲發光材料(DDCzTrz)以及發光材料(PVK)摻雜量子點發光二極體中透過螢光共振能量轉移機制已達到高效率的量子點發光二極體。利用捕捉過量注入的電子形成激子並進行輻射複合,再藉由螢光共振能量轉移機制將發光材料中激子的能量傳遞給鄰近的量子點,以避免電子堆積進行非輻射複合以提高量子點發光二極體之效率以及生命週期。
    本研究第一部分為摻雜PVK 在發光層中,並以不同旋轉速率測試最佳的發光層厚度,最後得到42.3nm 的發光層為最佳參數,最大亮度達到88,348 cd/m2 及最大效率達到10.24cd/A。接著第二部分改善電洞傳輸層,以不同濃度的DDCzTrz 摻雜在電洞傳輸層,測試最佳濃度為20%,亮度達到271,164 cd/m2 以及電流效率達到12.81cd/A。之後將同時摻雜PVK 以及DDCzTRz 在發光層及電洞傳輸層中,並同時調整PVK 的摻雜濃度,但摻雜PVK 會使溶液密度劇增,而使溶液製成的厚度難以控制進而影響載子傳輸,是造成元件表現不佳的主要原因。摻雜0.5wt%的PVK 為最佳參數其亮度達到170,131 cd/m2 以及電流效率達到9.5 cd/A。最後,將電荷傳輸層以及發光層透過不同旋轉時間來做厚度優化,促進載子注入的平衡,此部分的改善將元件性能提升到本研究最高值,其最大亮度為 1,196,888 cd/m2,最大電流效率為 30.83 cd/A。

    High current efficiency Quantum dot light-emitting diodes are demonstrated through the fluorescence resonance energy transfer mechanism and thermally activated delayed luminescent materials (DDCzTrz) and luminescent materials (PVK) doped into quantum dot light-emitting diodes in this thesis. Utilizing the excess injected electrons can form excitons in the hole transport layer and form radiative recombination, then the energy of excitons of luminescent materials is transferred to adjacent quantum dots to avoid electron accumulation and non-radiative recombination to improve the efficiency and lifetime of quantum dot lightemitting diodes by the fluorescence resonance energy transfer mechanism.
    The first part of this study is doping PVK in emissive layer, testing the optimal emissive layer thickness with different spin rates. Then, the 42.3nm emissive layer is obtained as the optimal parameter, the maximum luminance reaches 88,348 cd/m2 and the maximum efficiency reaches 10.24 cd/A. Then the second part is to improve the hole transport layer, doping the hole transport layer with different concentrations of DDCzTrz, the best concentration tested is 20%, the brightness reaches 271,164 cd/m2 and the current efficiency reaches 12.81cd/A. After that, PVK and DDCzTRz will be simultaneously doped into the emissive layer and the hole transport layer, and the doping concentration of PVK will be adjusted at the same time, but doping PVK will increase the solution density sharply, making the thickness and morphology of the solution difficult to control and affect the charge balance is the main reason of poor performance. PVK doped with 0.5wt% is the best parameter, its luminance reaches 170,131 cd/m2 and current efficiency reaches 9.5 cd/A. Finally, the thickness of the charge transport layer and the emissive layer are optimized through different spinning times to promote the balance of carrier injection. This part of the improvement will improve the performance of the device to the highest value in this study. Its maximum brightness is 1,196,888 cd/m2, and the maximum current efficiency is 30.83 cd/A.

    中文摘要............................................... I Abstract.............................................. II Acknowledgement ...................................... IV Contents ............................................. V Table Captions .......................................VII Figure Captions .................................... VIII Chapter 1 Introduction................................. 1 1-1 The progress of light-emitting diodes.............. 1 1-2 Introduction of quantum dots ...................... 3 1-2.1 The progress of QDs.............................. 3 1-2.2 Advantage of QD for lighting applications ....... 4 1-3 Introduction of thermally activated delayed fluorescence materials ................................ 5 1-3.1 Fluorescence and Phosphorescence................. 5 1-3.2 Thermally activated delayed fluorescence materials ....................................................... 6 1-4 Theory of quantum dots light-emitting diodes ..................................................... 7 1-4.1 Excitation mechanisms of QDs .................... 7 1-4.2 The type of electrically driven QD-LEDs ......... 7 1-4.3 Fluorescence resonance energy transfer mechanism 10 1-5 Motivation ....................................... 12 Chapter 2 Experimental process and system............. 20 2-1 Material.......................................... 20 2-2 Experiment machine ............................... 23 2-3 Substrate patterned process ...................... 25 2-4 Device Fabrication process........................ 25 2-5 Measurement and characteristic analysis .......... 26 Chapter 3 PVK-doped EML with different spin rate ...................................................... 36 3-1 Literature review................................. 36 3-2 Device fabrication................................ 36 3-3 Results and discussion ........................... 36 3-4 Summary........................................... 38 Chapter 4 DDCzTrz-doped HTL with different doping ratio....................................... 44 4-1 Literature review................................. 44 4-2 Device fabrication................................ 45 4-3 Results and discussion ........................... 45 4-4 Summary........................................... 48 Chapter 5 Polymer PVK dopes into the EML.............. 57 5-1 Device fabrication................................ 57 5-2 Results and discussion ........................... 57 5-3 Summary........................................... 59 Chapter 6 Optimized the spinning time of the CTLs and EML ...................................................... 70 6-1 Device fabrication................................ 70 6-2 Results and discussion ........................... 70 6-3 Summary........................................... 72 Chapter 7 Conclusion and Future work.................. 87 7-1 Conclusion ....................................... 87 7-2 Future work ...................................... 91 7-2.1 Replacing the material of HTL to TFB............ 91 7-2.2 Replacing the material of QD to CdSe/ZnSe .......91 7-2.3 Replacing the material of QD to Cd-free QD...... 92 Reference .................... 94

    Reference
    [1] P. Kathirgamanathan, L. M. Bushby, M. Kumaraverl, S. Ravichandran, and S. Surendrakumar, “Electroluminescent Organic and Quantum Dot LEDs: The State of the Art,” Journal of Display Technology, vol. 11, no. 5, pp. 480-493, 2015.
    [2] N. Holonyak, and S. F. Bevacqua, “COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−xPx) JUNCTIONS,” Applied Physics Letters, vol. 1, no. 4, pp. 82-83, 1962.
    [3] C. W. Tang, and S. A. VanSlyke, “Organic electroluminescent diodes,” Applied Physics Letters, vol. 51, no. 12, pp. 913-915, 1987.
    [4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Mrks, K. Mackay, R.H.Friend, P.L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Letters to Nature, vol. 347, pp. 539-541, 1990.
    [5] V. L. Colvin, M. C. Schlamp, and A. P. Allvlsatos, “Light-emitting diodes mad from cadmium selenide nanocrystals and a semiconducting polymer,” Letters to Nature, vol. 370, pp. 354-357, 1994.
    [6] M. C. Schlamp, X. Peng, and A. P. Alivisatos, “Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer,” Journal of Applied Physics, vol. 82, no. 11, pp. 5837-5842, 1997.
    [7] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Letters to Nature, vol. 395, pp. 151-154, 1998.
    [8] K. H. Kim, and J. J. Kim, “Origin and Control of Orientation of Phosphorescent and TADF Dyes for High-Efficiency OLEDs,” Adv Mater, vol. 30, no. 42, pp. e1705600, Oct, 2018.
    [9] Y. Zhang, J. Lee, and S. R. Forrest, “Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes,” Nat Commun, vol. 5, pp. 5008, Sep 25, 2014.
    [10] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature, vol. 492, no. 7428, pp. 234-8, Dec 13, 2012.
    [11] S. Shahnawaz, S. S. Sudheendran, M. R. Nagar, R. A. Yadav, S. Gull, D. K. Dubey, and J.-H. Jou, “Hole transporting materials for organic light emitting diodes: An Overview,” Journal of Materials Chemistry C, 2019.
    [12] M. L. S. Moungi G. Bawendi, and Louis E. Brus, “THE QUANTUM MECHANICS OF LARGER SEMICONDUCTOR CLUSTERS,” Annual Reviews, vol. 41, pp. 477-496, 1990.
    [13] K. C. Wan Ki Bae, Hyuck Hur, and Seonghoon Lee, “Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients,” American Chemical Society, vol. 20, pp. 531-539, 2007.
    [14] J. K. Wan Ki Bae, Ji Won Park, Kookheon Char, Changhee Lee, and Seonghoon Lee, “Highly Efficient Green-Light-Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient,” Adv. Mater., vol. 21, pp. 1690-1964, 2009.
    [15] H. Yersin, "Triplet emitters for OLED applications. Mechanisms of exciton trapping and control of emission properties," Transition Metal and Rare Earth Compounds, pp. 1-26: Springer, 2004.
    [16] T. Huang, W. Jiang, and L. Duan, “Recent progress in solution processable TADF materials for organic light-emitting diodes,” Journal of Materials Chemistry C, vol. 6, no. 21, pp. 5577-5596, 2018.
    [17] F. B. Dias, K. N. Bourdakos, V. Jankus, K. C. Moss, K. T. Kamtekar, V. Bhalla, J. Santos, M. R. Bryce, and A. P. Monkman, “Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters,” Adv Mater, vol. 25, no. 27, pp. 3707-14, Jul 19, 2013.
    [18] V. Jankus, P. Data, D. Graves, C. McGuinness, J. Santos, M. R. Bryce, F. B. Dias, and A. P. Monkman, “Highly Efficient TADF OLEDs: How the Emitter-Host Interaction Controls Both the Excited State Species and Electrical Properties of the Devices to Achieve Near 100% Triplet Harvesting and High Efficiency,” Advanced Functional Materials, vol. 24, no. 39, pp. 6178-6186, 2014.
    [19] M. r. N. Berberan-Santos, and J. o. M. M. Garcia, “Unusually Strong Delayed Fluorescence of C70,” American Chemical Society, vol. 118, pp. 9391-9394, 1996.
    [20] Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nature photonics, vol. 7, no. 1, pp. 13, 2013.
    [21] M. Schlamp, X. Peng, and A.-l. Alivisatos, “Improved efficiencies in light emitting diodes made with CdSe (CdS) core/shell type nanocrystals and a semiconducting polymer,” Journal of Applied Physics, vol. 82, no. 11, pp. 5837-5842, 1997.
    [22] S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature, vol. 420, no. 6917, pp. 800, 2002.
    [23] L. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, and V. Bulovic, “Contact printing of quantum dot light-emitting devices,” Nano letters, vol. 8, no. 12, pp. 4513-4517, 2008.
    [24] P. Anikeeva, C. Madigan, J. Halpert, M. Bawendi, and V. Bulović, “Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots,” Physical Review B, vol. 78, no. 8, pp. 085434, 2008.
    [25] Y. Shirasaki, “Efficiency loss mechanisms in colloidal quantum-dot light-emitting diodes,” Massachusetts Institute of Technology, 2013.
    [26] J. Caruge, J. Halpert, V. Wood, V. Bulović, and M. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nature photonics, vol. 2, no. 4, pp. 247, 2008.
    [27] J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, and K. Char, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano letters, vol. 12, no. 5, pp. 2362-2366, 2012.
    [28] L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nature photonics, vol. 5, no. 9, pp. 543, 2011.
    [29] S. Preus, K. Kilså, F.-A. Miannay, B. Albinsson, and L. M. Wilhelmsson, “FRETmatrix: a general methodology for the simulation and analysis of FRET in nucleic acids,” Nucleic acids research, vol. 41, no. 1, pp. e18-e18, 2012.
    [30] L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nature Photonics, vol. 5, no. 9, pp. 543-548, 2011.
    [31] X. Dai, Y. Deng, X. Peng, and Y. Jin, “Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization,” Adv Mater, vol. 29, no. 14, Apr, 2017.
    [32] W. Zheng, Z. Xu, D. Song, S. Zhao, B. Qiao, J. Chen, P. Wang, and X. Zheng, “Enhancing the efficiency and the luminance of quantum dot light-emitting diodes by inserting a leaked electron harvesting layer with thermal-activated delayed fluorescence material,” Organic Electronics, vol. 65, pp. 357-362, 2019.
    [33] F. Liang, Y. Liu, Y. Hu, Y.-L. Shi, Y.-Q. Liu, Z.-K. Wang, X.-D. Wang, B.-Q. Sun, and L.-S. Liao, “Polymer as an additive in the emitting layer for high-performance quantum dot light-emitting diodes,” ACS applied materials & interfaces, vol. 9, no. 23, pp. 20239-20246, 2017.
    [34] Q. Huang, J. Pan, Y. Zhang, J. Chen, Z. Tao, C. He, K. Zhou, Y. Tu, and W. Lei, “High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering,” Optics express, vol. 24, no. 23, pp. 25955-25963, 2016.
    [35] S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale, vol. 5, no. 12, pp. 5205-14, Jun 21, 2013.
    [36] P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and a. V. Bulovic, “Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum,” Nano Lett, vol. 9, pp. 2532, 2009.
    [37] Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nature Photonics, vol. 7, no. 1, pp. 13-23, 2012.
    [38] M. K. Choi, J. Yang, T. Hyeon, and D.-H. Kim, “Flexible quantum dot light-emitting diodes for next-generation displays,” npj Flexible Electronics, vol. 2, no. 1, 2018.
    [39] J. Heine, and K. Muller-Buschbaum, “Engineering metal-based luminescence in coordination polymers and metal-organic frameworks,” Chem Soc Rev, vol. 42, no. 24, pp. 9232-42, Dec 21, 2013.
    [40] E. A. Davis, and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philosophical Magazine, vol. 22, no. 179, pp. 0903-0922, 1990.
    [41] H. Kim, J. S. Horwitz, G. P. Kushto, Z. H. Kafafi, and D. B. Chrisey, “Indium tin oxide thin films grown on flexible plastic substrates by pulsed-laser deposition for organic light-emitting diodes,” Applied Physics Letters, vol. 79, no. 3, pp. 284-286, 2001.
    [42] Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nature Photonics, vol. 1, no. 12, pp. 717-722, 2007.
    [43] J. C. Carter, I. Grizzi, S. K. Heeks, D. J. Lacey, S. G. Latham, P. G. May, O. Ruiz de los Paños, K. Pichler, C. R. Towns, and H. F. Wittmann, “Operating stability of light-emitting polymer diodes based on poly(p-phenylene vinylene),” Applied Physics Letters, vol. 71, no. 1, pp. 34-36, 1997.
    [44] Q. J. Sun, B. H. Fan, Z. A. Tan, C. H. Yang, Y. F. Li, and Y. Yang, “White light from polymer light-emitting diodes: Utilization of fluorenone defects and exciplex,” Applied Physics Letters, vol. 88, no. 16, 2006.
    [45] Q. J. Sun, J. H. Hou, C. H. Yang, Y. F. Li, and Y. Yang, “Enhanced performance of white polymer light-emitting diodes using polymer blends as hole-transporting layers,” Applied Physics Letters, vol. 89, no. 15, 2006.
    [46] J. Sohn, D. Ko, H. Lee, J. Han, S.-D. Lee, and C. Lee, “Degradation mechanism of blue thermally activated delayed fluorescent organic light-emitting diodes under electrical stress,” Organic Electronics, vol. 70, pp. 286-291, 2019.
    [47] X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature, vol. 515, no. 7525, pp. 96-9, Nov 6, 2014.
    [48] D. Dong, W. Wu, L. Lian, D. Feng, Y. Su, W. Li, and G. He, “Enhanced performances of quantum dot light-emitting diodes with doped emitting layers by manipulating the charge carrier balance,” Journal of Materials Chemistry C, vol. 5, no. 20, pp. 5018-5023, 2017.
    [49] C.-Y. Huang, and J.-H. Lai, “Efficient polymer light-emitting diodes with ZnO nanoparticles and interpretation of observed sub-bandgap turn-on phenomenon,” Organic Electronics, vol. 32, pp. 244-249, 2016.
    [50] P. T. K. Chin, R. A. M. Hikmet, and R. A. J. Janssen, “Energy transfer in hybrid quantum dot light-emitting diodes,” Journal of Applied Physics, vol. 104, no. 1, 2008.
    [51] K. S. Lee, D. U. Lee, D. C. Choo, T. W. Kim, E. D. Ryu, S. W. Kim, and J. S. Lim, “Organic light-emitting devices fabricated utilizing core/shell CdSe/ZnS quantum dots embedded in a polyvinylcarbazole,” Journal of Materials Science, vol. 46, no. 5, pp. 1239-1243, 2010.
    [52] B.-H. Kang, S.-W. Lee, S.-W. Lim, T.-Y. You, S.-H. Yeom, K.-J. Kim, D.-H. Kwon, and S.-W. Kang, “Enhanced Charge Transfer of QDs/Polymer Hybrid LED by Interface Controlling,” IEEE Electron Device Letters, vol. 34, no. 5, pp. 656-658, 2013.
    [53] L. Wang, T. Chen, Q. Lin, H. Shen, A. Wang, H. Wang, C. Li, and L. S. Li, “High-performance azure blue quantum dot light-emitting diodes via doping PVK in emitting layer,” Organic Electronics, vol. 37, pp. 280-286, 2016.
    [54] F. Liang, Y. Liu, Y. Hu, Y. L. Shi, Y. Q. Liu, Z. K. Wang, X. D. Wang, B. Q. Sun, and L. S. Liao, “Polymer as an Additive in the Emitting Layer for High-Performance Quantum Dot Light-Emitting Diodes,” ACS Appl Mater Interfaces, vol. 9, no. 23, pp. 20239-20246, Jun 14, 2017.
    [55] M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, “Polymer and small molecule mixture for organic hole transport layers in quantum dot light-emitting diodes,” ACS Appl Mater Interfaces, vol. 5, no. 23, pp. 12369-74, Dec 11, 2013.
    [56] Y. L. Min-Ming Yan, Yong-Tian Zhou, Li Liu, Yong Zhang,, and a. Y. L. Bao-Gui You, “Enhancing the Performance of Blue Quantum-Dot Light-Emitting Diodes Based on Mg-Doped ZnO as an Electron Transport Layer,” IEEE Photonics Journal, vol. 9, pp. 1-8, 2017.
    [57] H. T. Nguyen, N. D. Nguyen, and S. Lee, “Application of solution-processed metal oxide layers as charge transport layers for CdSe/ZnS quantum-dot LEDs,” Nanotechnology, vol. 24, no. 11, pp. 115201, Mar 22, 2013.
    [58] Chihaya Adachi, Marc A. Baldo, Mark E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light emitting device,” JOURNAL OF APPLIED PHYSICS, vol. 90, pp. 5048-5051, 2001.
    [59] P.O. Anikeeva, C.F. Madigan, S.A. Coe-Sullivan, J.S. Steckel, M.G. Bawendi, and V. Bulovic´, “Photoluminescence of CdSe/ZnS core/shell quantum dots enhanced by energy transfer from a phosphorescent donor,” Chemical Physics Letters, vol. 424, pp. 120-125, 2006.
    [60] Y. Q. Zhang, and X. A. Caoa, “Electroluminescence of green CdSe/ZnS quantum dots enhanced by harvesting excitons from phosphorescent molecules,” APPLIED PHYSICS LETTERS, vol. 97, 2010.
    [61] E. Mutlugun, B. Guzelturk, A. P. Abiyasa, Y. Gao, X. W. Sun, and H. V. Demir, “Colloidal Quantum Dot Light-Emitting Diodes Employing Phosphorescent Small Organic Molecules as Efficient Exciton Harvesters,” J Phys Chem Lett, vol. 5, no. 16, pp. 2802-7, Aug 21, 2014.
    [62] X. Z. Guohong Liu, Xiaowei Sun and Shuming Chen, “Performance of Inverted Quantum Dot Light-Emitting Diodes Enhanced by Using Phosphorescent Molecules as Exciton Harvesters,” J. Phys. Chem. C, vol. 120, pp. 4667−4672, 2016.
    [63] Y. N. Zhang, Y. S. Liu, M. M. Yan, Y. Wei, Q. L. Zhang, and Y. Zhang, “Efficient Quantum-Dot Light-Emitting Diodes Employing Thermally Activated Delayed Fluorescence Emitters as Exciton Harvesters,” ACS Appl Mater Interfaces, vol. 10, no. 8, pp. 7435-7441, Feb 28, 2018.
    [64] Y. R. Park, H. Y. Jeong, Y. S. Seo, W. K. Choi, and Y. J. Hong, “Quantum-Dot Light-Emitting Diodes with Nitrogen-Doped Carbon Nanodot Hole Transport and Electronic Energy Transfer Layer,” Sci Rep, vol. 7, pp. 46422, Apr 12, 2017.
    [65] Y. Liu, C. Jiang, C. Song, J. Wang, L. Mu, Z. He, Z. Zhong, Y. Cun, C. Mai, J. Wang, J. Peng, and Y. Cao, “Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes,” ACS Nano, vol. 12, no. 2, pp. 1564-1570, Feb 27, 2018.
    [66] L. Lan, B. Liu, H. Tao, J. Zou, C. Jiang, M. Xu, L. Wang, J. Peng, and Y. Cao, “Preparation of efficient quantum dot light-emitting diodes by balancing charge injection and sensitizing emitting layer with phosphorescent dye,” Journal of Materials Chemistry C, vol. 7, no. 19, pp. 5755-5763, 2019.
    [67] W. Zheng, D. Song, S. Zhao, B. Qiao, Z. Xu, J. Chen, P. Wang, and Y. Liang, “All-solution processed inverted QLEDs with double hole transport layers and thermal activated delay fluorescent dopant as energy transfer medium,” Organic Electronics, vol. 77, 2020.
    [68] Y. Zhao, L. Chen, J. Wu, X. Tan, Z. Xiong, and Y. Lei, “Composite Hole Transport Layer Consisting of High-Mobility Polymer and Small Molecule With Deep-Lying HOMO Level for Efficient Quantum Dot Light-Emitting Diodes,” IEEE Electron Device Letters, vol. 41, no. 1, pp. 80-83, 2020.
    [69] X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nature Photonics, vol. 12, no. 3, pp. 159-164, 2018.
    [70] H. Shen, X. Bai, A. Wang, H. Wang, L. Qian, Y. Yang, A. Titov, J. Hyvonen, Y. Zheng, and L. S. Li, “High-Efficient Deep-Blue Light-Emitting Diodes by Using High Quality ZnxCd1-xS/ZnS Core/Shell Quantum Dots,” Advanced Functional Materials, vol. 24, no. 16, pp. 2367-2373, 2014.
    [71] H. Shen, Q. Gao, Y. Zhang, Y. Lin, Q. Lin, Z. Li, L. Chen, Z. Zeng, X. Li, Y. Jia, S. Wang, Z. Du, L. S. Li, and Z. Zhang, “Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency,” Nature Photonics, vol. 13, no. 3, pp. 192-197, 2019.
    [72] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” American Chemical Society, vol. 101, pp. 9463-9475, 1997.
    [73] H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett, vol. 15, no. 2, pp. 1211-6, Feb 11, 2015.
    [74] S.-H. Wei, and A. Zunger, “Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals,” Applied Physics Letters, vol. 72, no. 16, pp. 2011-2013, 1998.
    [75] J. O. McCaldin, T. C. McGill, and C. A. Mead, “Correlation for III-V and II-VI Semiconductors of the Au Schottky Barrier Energy with Anion Electronegativity,” Physical Review Letters, vol. 36, no. 1, pp. 56-58, 1976.
    [76] D. Deng, Y. Chen, J. Cao, J. Tian, Z. Qian, S. Achilefu, and Y. Gu, “High-Quality CuInS2/ZnS Quantum Dots for In vitro and In vivo Bioimaging,” Chemistry of Materials, vol. 24, no. 15, pp. 3029-3037, 2012.
    [77] S. Adam, D. V. Talapin, H. Borchert, A. Lobo, C. McGinley, A. R. de Castro, M. Haase, H. Weller, and T. Moller, “The effect of nanocrystal surface structure on the luminescence properties: photoemission study of HF-etched InP nanocrystals,” J Chem Phys, vol. 123, no. 8, pp. 084706, Aug 22, 2005.
    [78] H. F. a. A. Zunger, “InP quantum dots: Electronic structure, surface effects, and the redshifted emission,” PHYSICAL REVIEW B, vol. 56, pp. 1496-1508, 1997.
    [79] O. I. Mićić, S. P. Ahrenkiel, and A. J. Nozik, “Synthesis of extremely small InP quantum dots and electronic coupling in their disordered solid films,” Applied Physics Letters, vol. 78, no. 25, pp. 4022-4024, 2001.
    [80] P. M. Allen, B. J. Walker, and M. G. Bawendi, “Mechanistic insights into the formation of InP quantum dots,” Angew Chem Int Ed Engl, vol. 49, no. 4, pp. 760-2, 2010.
    [81] G. Fan, C. Wang, and J. Fang, “Solution-based synthesis of III–V quantum dots and their applications in gas sensing and bio-imaging,” Nano Today, vol. 9, no. 1, pp. 69-84, 2014.
    [82] H. M. C. O. I. Mic´ic´, H. Fu, A. Zunger, J. R. Sprague, A. Mascarenhas, and A. J. Nozik, “Size-Dependent Spectroscopy of InP Quantum Dots,” AdVance ACS Abstracts, vol. 101, pp. 4904-4912, 1997.
    [83] V. Biju, S. Mundayoor, R. V. Omkumar, A. Anas, and M. Ishikawa, “Bioconjugated quantum dots for cancer research: present status, prospects and remaining issues,” Biotechnol Adv, vol. 28, no. 2, pp. 199-213, Mar-Apr, 2010.
    [84] S. T. Graeme J. Stasiuk, Daniel Imbert, Cathy Poillot, Marco Giardiello, Ce´ line Tisseyre, Emmanuel L. Barbier, Pascal Henry Fries, Michel de Waard, Peter Reiss, and Marinella Mazzanti†,, “Cell-Permeable Ln(III) Chelate-Functionalized InP Quantum Dots As Multimodal Imaging Agents,” American Chemical Society, vol. 5, pp. 8193-8201, 2011.
    [85] L. E. Bain, and A. Ivanisevic, “Engineering the cell-semiconductor interface: a materials modification approach using II-VI and III-V semiconductor materials,” Small, vol. 11, no. 7, pp. 768-80, Feb 18, 2015.
    [86] M. D. Tessier, D. Dupont, K. De Nolf, J. De Roo, and Z. Hens, “Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots,” Chemistry of Materials, vol. 27, no. 13, pp. 4893-4898, 2015.
    [87] G. Xu, S. Zeng, B. Zhang, M. T. Swihart, K. T. Yong, and P. N. Prasad, “New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine,” Chem Rev, vol. 116, no. 19, pp. 12234-12327, Oct 12, 2016.
    [88] Z. Zhang, D. Liu, D. Li, K. Huang, Y. Zhang, Z. Shi, R. Xie, M.-Y. Han, Y. Wang, and W. Yang, “Dual Emissive Cu:InP/ZnS/InP/ZnS Nanocrystals: Single-Source “Greener” Emitters with Flexibly Tunable Emission from Visible to Near-Infrared and Their Application in White Light-Emitting Diodes,” Chemistry of Materials, vol. 27, no. 4, pp. 1405-1411, 2015.

    下載圖示 校內:2025-07-22公開
    校外:2025-07-22公開
    QR CODE