簡易檢索 / 詳目顯示

研究生: 黃瑋
Huang, Wei
論文名稱: 3D列印攜帶辛伐他汀藥物椎間籠架促進骨細胞生長並增強脊椎融合整體穩定性
3D printing intervertebral cage with Simvastatin loading to increase cage stability and promote intervertebral disc fusion
指導教授: 涂庭源
Tu, Ting-Yuan
熊彥傑
Shyong, Yan-Jye
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 73
中文關鍵詞: 3D列印藥物辛伐他汀可降解骨融合籠架脊椎融合持續藥物釋放
外文關鍵詞: 3D printed drug, Simvastatin, Degradable fusion cage, Spinal fusion, Sustain drug release
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據目前用於椎間盤退化脊柱融合術的植入物臨床缺點,本研究針對植入物籠架進行改良。目前的臨床手術是利用籠架穩定植入物,在融合過程中存在籠架位移沉降及填充藥物分散等問題,此前的大鼠尾椎實驗模型已顯示這些限制。因此,本研究透過的3D列印改良籠架及含藥物列印樹脂來提升植入物的穩定性與融合效率。
    首先,主要目標是基於術前CT成像進行客製化的3D列印植入物設計。這些植入物將根據CT成像中的椎間盤結構量身訂製,以確保完美貼合,避免尺寸不匹配所可能導致的位移問題。植入物設計具有微網格形成的粗糙表面結構,以增加與周圍骨組織的摩擦力,從而促進早期融合穩定性。其次,植入物的網狀多孔結構引導骨細胞生長並促進椎間模型與相鄰椎骨之間的骨融合。這種設計提供理想的微環境,有助於細胞附著、增殖和組織整合,進而促進新骨形成。
    為了進一步增強脊柱椎間融合,本研究將小分子藥物辛伐他汀整合到3D列印材料中。辛伐他汀原為降血脂藥物,在近年來的研究中顯示具有促進骨生成的效果。透過光固化3D列印技術的非加熱製程特性,印製含有藥物的植入物籠架。使籠架本身直接含有刺激骨生成的小分子藥物,搭配網格結構填充藥物粉末,解決先前藥物分散問題,確保藥物從列印籠架中持續釋放。此外,網狀結構增加接觸面積有助於持續釋放,解決手術期間單次藥物給藥的限制。這種持續釋放效果將在三個月及更長期間內促進新骨形成完成椎間骨融合。
    本研究利用具有粗糙表面和多孔結構的客製化3D列印植入物,製造持續的藥物遞送機制,克服了籠架沉降、填充藥物分散及一次性給藥相關的挑戰。這種綜合改良方法不僅提升了植入物的穩定性,還促進了有效的脊柱椎間融合,改善並加速預後。

    This study addresses the challenge of intervertebral disc degeneration through orthopedic surgery involving spinal fusion with implants. The current approach utilizes cages to stabilize implants during fusion, but previous rat tail model experiments revealed issues such as cage subsidence and scattered drugs. This study aims to enhance implant stability and fusion efficiency using a comprehensive approach. The primary objective involves personalized implant through a custom-made 3D printing based on preoperative CT imaging. Implants will feature barb surface structures for increased friction, promoting early-stage fusion stability. Subsequently, a mesh-like porous structure will be incorporated to guide cell growth and facilitate fusion between the intervertebral model and adjacent vertebrae. To further enhance spinal intervertebral fusion, simvastatin will be integrated into the implant printing material. The non-thermal characteristic of SLA printing will allow drugs to be dispersed to the resin without degradation. Printed implants will directly contain small-molecule drugs that stimulate bone generation. This approach will prevent drug scattered issues during surgery and ensure sustained drug release from the 3D printing cage. The mesh will also contribute to continuous drug delivery, addressing the limitations of single-dose administration during surgery. In essence, this study aims to overcome challenges associated with implant subsidence, drug dispersion, and one-time drug administration by utilizing personalized 3D-printed implants with rough and porous structures, combined with sustained drug delivery mechanisms. The goal is to enhance implant stability and promote effective spinal intervertebral fusion for improved patient outcomes.

    摘要 II ABSTRACT III ACKNOWLEDGEMENT IV LIST OF FIGURES VII LIST OF TABLES VII LIST OF ABBREVIATION VIII I Literature review 1 1 INTERVERTEBRAL DISC AND HERNIATED INTERVERTEBRAL DISC TREATMENT 1 2 3D PRINTING IMPLANT AND 3D PRINTING DRUG 3 3 SIMVASTATIN EFFECT ON BONE FUSION IN INTERVERTEBRAL DISC 6 4 STABILITY IN INTERVERTEBRAL FUSION SURGERY AND PEDICLE SCREW FIXATION 8 5 THE ROLE AND ADVANCEMENTS OF HYDROXYAPATITE 9 6 BONE GRAFT MATERIALS IN SPINAL FUSION SURGERIES 12 II Specific Aim and Experimental design 15 III Material and methods 18 1 MATERIAL 18 1.1 MATERIALS OF RESIN 18 1.2 CALCIUM PHOSPHATE(CAP) NANOPARTICLE SYNTHESIS 18 1.3 SYNTHESIS OF PEGDA-IRGACURE 2959-SIMVASTATIN-CAP 18 1.4 ALLOGRAFT 20 2 METHODS 21 2.1 MICRO-CT AND X-RAY IMAGE 21 2.2 CAGE DESIGN 21 2.3 3D PRINTING PROGRESS 23 2.4 POST-PRINTING PROCESSING OF 3D PRINTED CAGE 24 2.5 SEM & EDS 25 2.6 FTIR 25 2.7 SWELL 25 2.8 DRUG RELEASE TESTS BY (HPLC) 26 2.9 DEGRADATION 27 2.10 HARDNESS 27 2.11 LIVE/DEAD ASSAY 27 2.12 ESTABLISHING A CAUDAL DISC RAT MODEL FOR INTERBODY FUSION 29 2.13 INSERT 3D PRINTING CAGE 29 2.14 INTERBODY FUSION EVALUATION WITH MICRO-CT AND HISTOLOGY 30 2.15 THREE POINTS BLENDING TEST 30 2.16 HISTOLOGY 31 IV Results 32 1 MATERIAL 32 1.1 SEM 32 1.2 EDS 32 1.3 FTIR 33 1.4 HARDNESS 34 1.5 SWELL 35 1.6 DRUG RELEASE 35 1.7 DEGRADATION 35 2 IN VITRO 37 2.1 RESIN CELL TOXICITY 37 2.2 SIMVASTATIN CONCENTRATION EFFECT ON CELL PROLIFERATION 38 3 IN VIVO 40 3.1 STABILITY GROUP (TWO WEEKS) 40 3.1.1 MORPHOMETRY RESULTS 41 3.1.2 THREE POINTS BENDING TEST 43 3.1.3 HISTOLOGY TEST 44 3.2 FUSION GROUP (8 WEEKS) 44 3.2.1 MICRO-CT 3D RECONSTRUCTIVE MORPHOMETRIC ANALYSIS 45 3.2.2 MORPHOMETRY RESULTS 48 3.2.3 THREE POINTS BLENDING TEST 49 3.3 16 WEEKS 51 3.3.1 MORPHOMETRY RESULTS 51 3.3.2 16 WEEKS HISTOLOGY TEST 52 V Discussion 54 1 INCORPORATION OF DRUGS INTO 3D PRINTED RESIN AND MESH STRUCTURES 54 2 RELATIONSHIP BETWEEN ENDPLATE POROSITY AND BONE FORMATION 56 3 DURATION AND LIMITATIONS OF RAT CAUDAL VERTEBRAL FUSION MODEL 58 VI Reference 60

    [1] K. Phan and R. J. Mobbs, “Evolution of Design of Interbody Cages for Anterior Lumbar Interbody Fusion,” Orthop Surg, vol. 8, no. 3, pp. 270–277, 2016, doi: 10.1111/os.12259.
    [2] J. Xin, Y. Wang, Z. Zheng, S. Wang, S. Na, and S. Zhang, “Treatment of Intervertebral Disc Degeneration,” Orthop Surg, vol. 14, no. 7, pp. 1271–1280, Apr. 2022, doi: 10.1111/os.13254.
    [3] H. Huang, J. Liu, L. Wang, and Y. Fan, “A critical review on the biomechanical study of cervical interbody fusion cage,” Medicine in Novel Technology and Devices, vol. 11, p. 100070, Sep. 2021, doi: 10.1016/j.medntd.2021.100070.
    [4] D. T. Editor, “Section 2, Chapter 7: Biological Approach for Spinal Fusion,” Wheeless’ Textbook of Orthopaedics. Accessed: Feb. 24, 2025. [Online]. Available: https://www.wheelessonline.com/issls/section-2-chapter-7-biological-approach-for-spinal-fusion/
    [5] M. Laubach, P. Kobbe, and D. W. Hutmacher, “Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions,” Biomaterials, p. 121699, Aug. 2022, doi: 10.1016/j.biomaterials.2022.121699.
    [6] G. Michael Cheers et al., “Advances in implants and bone graft types for lumbar spinal fusion surgery,” Biomaterials Science, vol. 12, no. 19, pp. 4875–4902, 2024, doi: 10.1039/D4BM00848K.
    [7] A. Warburton, S. J. Girdler, C. M. Mikhail, A. Ahn, and S. K. Cho, “Biomaterials in Spinal Implants: A Review,” Neurospine, vol. 17, no. 1, pp. 101–110, Mar. 2020, doi: 10.14245/ns.1938296.148.
    [8] S. Li et al., “Research progress on the biological modifications of implant materials in 3D printed intervertebral fusion cages,” J Mater Sci-mater M, vol. 33, no. 1, p. 2, Dec. 2021, doi: 10.1007/s10856-021-06609-4.
    [9] T. Ishimoto et al., “Outstanding in vivo mechanical integrity of additively manufactured spinal cages with a novel ‘honeycomb tree structure’ design via guiding bone matrix orientation,” The Spine Journal, vol. 22, no. 10, pp. 1742–1757, Oct. 2022, doi: 10.1016/j.spinee.2022.05.006.
    [10] M. Meng et al., “Clinical applications and prospects of 3D printing guide templates in orthopaedics,” J Orthop Transl, vol. 34, pp. 22–41, May 2022, doi: 10.1016/j.jot.2022.03.001.
    [11] A. Geraili, M. Xing, and K. Mequanint, “Design and fabrication of drug-delivery systems toward adjustable release profiles for personalized treatment,” VIEW, vol. 2, no. 5, p. 20200126, 2021, doi: 10.1002/VIW.20200126.
    [12] D. Karalia, A. Siamidi, V. Karalis, and M. Vlachou, “3D-Printed Oral Dosage Forms: Mechanical Properties, Computational Approaches and Applications,” Pharmaceutics, vol. 13, no. 9, p. 1401, Sep. 2021, doi: 10.3390/pharmaceutics13091401.
    [13] W. Wang, “3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering,” Compos Part B-eng, vol. 224, p. 109192, Nov. 2021, doi: 10.1016/j.compositesb.2021.109192.
    [14] J. Goole and K. Amighi, “3D printing in pharmaceutics: A new tool for designing customized drug delivery systems,” Int J Pharmaceut, vol. 499, no. 1, pp. 376–394, Feb. 2016, doi: 10.1016/j.ijpharm.2015.12.071.
    [15] P. Robles-Martinez et al., “3D Printing of a Multi-Layered Polypill Containing Six Drugs Using a Novel Stereolithographic Method,” Pharmaceutics, vol. 11, no. 6, p. 274, Jun. 2019, doi: 10.3390/pharmaceutics11060274.
    [16] M. B. Browning and E. Cosgriff-Hernandez, “Development of a Biostable Replacement for PEGDA Hydrogels,” Biomacromolecules, vol. 13, no. 3, pp. 779–786, Mar. 2012, doi: 10.1021/bm201707z.
    [17] A. W. James et al., “A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2,” Tissue Eng Part B Rev, vol. 22, no. 4, pp. 284–297, Aug. 2016, doi: 10.1089/ten.teb.2015.0357.
    [18] H. Jin, Y. Ji, Y. Cui, L. Xu, H. Liu, and J. Wang, “Simvastatin-Incorporated Drug Delivery Systems for Bone Regeneration,” ACS Biomater. Sci. Eng., vol. 7, no. 6, pp. 2177–2191, Jun. 2021, doi: 10.1021/acsbiomaterials.1c00462.
    [19] X. Zhang et al., “Human adipose-derived stem cells and simvastatin-functionalized biomimetic calcium phosphate to construct a novel tissue-engineered bone,” Biochem Bioph Res Co, vol. 495, no. 1, pp. 1264–1270, Jan. 2018, doi: 10.1016/j.bbrc.2017.11.150.
    [20] C.-L. Lin et al., “Calcium phosphate complex of recombinant human thrombomodulin promote bone formation in interbody fusion,” Biofabrication, vol. 17, no. 1, p. 015010, Oct. 2024, doi: 10.1088/1758-5090/ad8035.
    [21] J. Chou, T. Ito, D. Bishop, M. Otsuka, B. Ben-Nissan, and B. Milthorpe, “Controlled Release of Simvastatin from Biomimetic β-TCP Drug Delivery System,” PLoS ONE, vol. 8, no. 1, p. e54676, Jan. 2013, doi: 10.1371/journal.pone.0054676.
    [22] J. Qi, H. Wu, and G. Liu, “Novel Strategies for Spatiotemporal and Controlled BMP-2 Delivery in Bone Tissue Engineering,” Cell Transplant, vol. 33, p. 09636897241276733, Sep. 2024, doi: 10.1177/09636897241276733.
    [23] H. Liu et al., “Incorporating simvastatin/poloxamer 407 hydrogel into 3D-printed porous Ti6Al4V scaffolds for the promotion of angiogenesis, osseointegration and bone ingrowth,” Biofabrication, vol. 8, no. 4, p. 045012, Oct. 2016, doi: 10.1088/1758-5090/8/4/045012.
    [24] R. Masaeli, T. S. Jafarzadeh Kashi, R. Dinarvand, M. Tahriri, V. Rakhshan, and M. Esfandyari-Manesh, “Preparation, Characterization and Evaluation of Drug Release Properties of Simvastatin-loaded PLGA Microspheres,” Iran J Pharm Res, vol. 15, no. Suppl, pp. 205–211, 2016, Accessed: Jul. 11, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242366/
    [25] M. Yan, J. Ni, H. Shen, D. Song, M. Ding, and J. Huang, “Local controlled release of simvastatin and PDGF from core/shell microspheres promotes bone regeneration in vivo,” RSC Adv., vol. 7, no. 32, pp. 19621–19629, Mar. 2017, doi: 10.1039/C7RA01503H.
    [26] J. E. G. C. Rosselli, D. M. F. S. Martins, J. L. Martins, C. R. G. C. M. de Oliveira, D. J. Fagundes, and M. O. Taha, “The effect of simvastatin on the regeneration of surgical cavities in the femurs of rabbits,” Acta Cir Bras, vol. 29, no. 2, pp. 87–92, Feb. 2014, doi: 10.1590/S0102-86502014000200003.
    [27] J. Tan et al., “Single-Dose Local Simvastatin Injection Improves Implant Fixation via Increased Angiogenesis and Bone Formation in an Ovariectomized Rat Model,” Med Sci Monit, vol. 21, pp. 1428–1439, May 2015, doi: 10.12659/MSM.892247.
    [28] A. Przekora, P. Kazimierczak, M. Wojcik, E. Chodorski, and J. Kropiwnicki, “Mesh Ti6Al4V Material Manufactured by Selective Laser Melting (SLM) as a Promising Intervertebral Fusion Cage,” Int J Mol Sci, vol. 23, no. 7, p. 3985, Apr. 2022, doi: 10.3390/ijms23073985.
    [29] D. Grob, S. Daehn, and A. F. Mannion, “Titanium mesh cages (TMC) in spine surgery,” Eur Spine J, vol. 14, no. 3, pp. 211–221, Apr. 2005, doi: 10.1007/s00586-004-0748-7.
    [30] A. T. Villavicencio et al., “Unilateral and bilateral pedicle screw fixation in transforaminal lumbar interbody fusion: radiographic and clinical analysis,” World Neurosurg, vol. 83, no. 4, pp. 553–559, Apr. 2015, doi: 10.1016/j.wneu.2014.12.012.
    [31] Y. Zhang, Q. Peng, S. Wang, Y. Yang, G. Lin, and J. Zhang, “A pilot study of influence of pedicle screw instrumentation on immature vertebra: a minimal 5-year follow-up in children younger than 5 years,” Mar. 2019, doi: 10.3171/2018.12.PEDS18622.
    [32] D. Pham Minh, N. Lyczko, H. Sebei, A. Nzihou, and P. Sharrock, “Synthesis of calcium hydroxyapatite from calcium carbonate and different orthophosphate sources: A comparative study,” Materials Science and Engineering: B, vol. 177, no. 13, pp. 1080–1089, Aug. 2012, doi: 10.1016/j.mseb.2012.05.007.
    [33] G. Tp and Z. Hf, “Effects of hydroxyapatite nanoparticles on liver enzymes and blood components,” J Clin Invest Stud, vol. 1, no. 3, 2018, doi: 10.15761/JCIS.1000113.
    [34] N. Roveri and M. Iafisco, “Evolving application of biomimetic nanostructured hydroxyapatite,” NSA, p. 107, Nov. 2010, doi: 10.2147/NSA.S9038.
    [35] P. Müller et al., “Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells,” J Cell Mol Med, vol. 12, no. 1, pp. 281–291, Jan. 2008, doi: 10.1111/j.1582-4934.2007.00103.x.
    [36] Y. Zhang et al., “The Osteoinductivity of Calcium Phosphate-Based Biomaterials: A Tight Interaction With Bone Healing,” Front. Bioeng. Biotechnol., vol. 10, May 2022, doi: 10.3389/fbioe.2022.911180.
    [37] J. Litak et al., “Hydroxyapatite Use in Spine Surgery—Molecular and Clinical Aspect,” Materials (Basel), vol. 15, no. 8, p. 2906, Apr. 2022, doi: 10.3390/ma15082906.
    [38] A. Veiga, S. Madureira, J. Costa, F. Castro, F. Rocha, and A. Oliveira, “Tackling current production of HAp and HAp-driven biomaterials,” Materials Advances, vol. 4, Sep. 2023, doi: 10.1039/D3MA00363A.
    [39] S. Lee, D.-W. Ham, O. Kwon, J.-H. Park, Y. Yoon, and H.-J. Kim, “Comparison of Fusion Rates among Various Demineralized Bone Matrices in Posterior Lumbar Interbody Fusion,” Medicina, vol. 60, no. 2, p. 265, Feb. 2024, doi: 10.3390/medicina60020265.
    [40] H.-S. Sohn and J.-K. Oh, “Review of bone graft and bone substitutes with an emphasis on fracture surgeries,” Biomater Res, vol. 23, p. 9, Mar. 2019, doi: 10.1186/s40824-019-0157-y.
    [41] T. T. Roberts and A. J. Rosenbaum, “Bone grafts, bone substitutes and orthobiologics,” Organogenesis, vol. 8, no. 4, pp. 114–124, Oct. 2012, doi: 10.4161/org.23306.
    [42] C. Myeroff and M. Archdeacon, “Autogenous bone graft: donor sites and techniques,” J Bone Joint Surg Am, vol. 93, no. 23, pp. 2227–2236, Dec. 2011, doi: 10.2106/JBJS.J.01513.
    [43] H.-J. Kang, S.-S. Park, G. Tripathi, and B.-T. Lee, “Injectable demineralized bone matrix particles and their hydrogel bone grafts loaded with β-tricalcium phosphate powder and granules: A comparative study,” Materials Today Bio, vol. 16, p. 100422, Dec. 2022, doi: 10.1016/j.mtbio.2022.100422.
    [44] K. Tilkeridis, P. Touzopoulos, A. Ververidis, S. Christodoulou, K. Kazakos, and G. Drosos, “Use of demineralized bone matrix in spinal fusion,” World journal of orthopedics, vol. 5, pp. 30–37, Jan. 2014, doi: 10.5312/wjo.v5.i1.30.
    [45] H. Zhang et al., “Demineralized Bone Matrix Carriers and their Clinical Applications: An Overview,” Orthop Surg, vol. 11, no. 5, pp. 725–737, Sep. 2019, doi: 10.1111/os.12509.
    [46] P. Tournier et al., “A partially demineralized allogeneic bone graft: in vitro osteogenic potential and preclinical evaluation in two different intramembranous bone healing models,” Sci Rep, vol. 11, no. 1, p. 4907, Mar. 2021, doi: 10.1038/s41598-021-84039-6.
    [47] M. Ciszyński, S. Dominiak, M. Dominiak, T. Gedrange, and J. Hadzik, “Allogenic Bone Graft in Dentistry: A Review of Current Trends and Developments,” Int J Mol Sci, vol. 24, no. 23, p. 16598, Nov. 2023, doi: 10.3390/ijms242316598.
    [48] W. Wang and K. W. K. Yeung, “Bone grafts and biomaterials substitutes for bone defect repair: A review,” Bioactive Materials, vol. 2, no. 4, pp. 224–247, Dec. 2017, doi: 10.1016/j.bioactmat.2017.05.007.
    [49] J. S. Yoo, J. Ahn, D. S. Patel, N. M. Hrynewycz, T. S. Brundage, and K. Singh, “An evaluation of biomaterials and osteobiologics for arthrodesis achievement in spine surgery,” Annals of Translational Medicine, vol. 7, no. Suppl 5, Art. no. Suppl 5, Sep. 2019, doi: 10.21037/atm.2019.06.80.
    [50] C.-G. Zhao et al., “Clinical outcomes of treatment with cage‑shaped demineralized bone plus local bone grafts vs. autogenous iliac crest bone grafts in instrumented single‑level lumbar fusion: A retrospective cohort study,” Experimental and Therapeutic Medicine, vol. 19, no. 1, pp. 393–399, Jan. 2020, doi: 10.3892/etm.2019.8171.
    [51] T. Ishihara, M. Miyazaki, N. Notani, S. Kanezaki, M. Kawano, and H. Tsumura, “Locally applied simvastatin promotes bone formation in a rat model of spinal fusion,” Journal of Orthopaedic Research, vol. 35, no. 9, pp. 1942–1948, 2017, doi: 10.1002/jor.23479.
    [52] L. Gens et al., “Surgical technique and comparison of autologous cancellous bone grafts from various donor sites in rats,” J Orthop Res, vol. 41, no. 4, pp. 834–844, 2023, doi: 10.1002/jor.25429.
    [53] Y.-C. Yeh et al., “Characterization of a novel caudal vertebral interbody fusion in a rat tail model: An implication for future material and mechanical testing,” Biomed J, vol. 40, no. 1, pp. 62–68, Feb. 2017, doi: 10.1016/j.bj.2016.07.002.
    [54] H. Koshimizu et al., “Implant-Related Complications after Spinal Fusion: A Multicenter Study,” Global Spine J, vol. 14, no. 1, pp. 74–81, Jan. 2024, doi: 10.1177/21925682221094267.
    [55] P. D. Vu et al., “Biologic Complications Associated with Cylindrical Lead Spinal Cord Stimulator Implants: A Narrative Review,” Orthopedic Reviews, vol. 16, Sep. 2024, doi: 10.52965/001c.123443.
    [56] P. Panagakis, K. Zygogiannis, I. Fanourgiakis, D. Kalatzis, and K. Stathopoulos, “The Role of the Periosteum in Bone Formation From Adolescence to Old Age,” Cureus, vol. 17, no. 1, p. e76774, doi: 10.7759/cureus.76774.
    [57] J. Liu and D. G. Kerns, “Mechanisms of Guided Bone Regeneration: A Review,” Open Dent J, vol. 8, pp. 56–65, May 2014, doi: 10.2174/1874210601408010056.
    [58] G. Osterhoff, E. F. Morgan, S. J. Shefelbine, L. Karim, L. M. McNamara, and P. Augat, “Bone mechanical properties and changes with osteoporosis,” Injury, vol. 47, no. Suppl 2, pp. S11–S20, Jun. 2016, doi: 10.1016/S0020-1383(16)47003-8.
    [59] P. Xue et al., “PGE2/EP4 skeleton interoception activity reduces vertebral endplate porosity and spinal pain with low-dose celecoxib,” Bone Res, vol. 9, no. 1, p. 36, Aug. 2021, doi: 10.1038/s41413-021-00155-z.
    [60] J. Jiao et al., “Influence of porosity on osteogenesis, bone growth and osteointegration in trabecular tantalum scaffolds fabricated by additive manufacturing,” Front Bioeng Biotechnol, vol. 11, p. 1117954, Jan. 2023, doi: 10.3389/fbioe.2023.1117954.

    無法下載圖示 校內:2029-03-31公開
    校外:2029-03-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE