| 研究生: |
吳孟儒 Wu, Meng-Ru |
|---|---|
| 論文名稱: |
利用氮化鎂氮化鎵緩衝層和圖案化藍寶石基板於氮化物蕭基二極體與金半金光檢測器之研究 The study of Nitride-based Schottky diode and MSM photodetector with MgN/GaN nucleation layer and patterned sapphire substrate |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 蕭基二極體 、圖案化藍寶石基板 、金半金光檢測器 、氮化鎂氮化鎵緩衝層 |
| 外文關鍵詞: | MgxNy/GaN buffer layer, MSM photodetector, Schottky diode, patterned sapphire substrate (PSS) |
| 相關次數: | 點閱:78 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用有機化學氣相沉積系統成長出具有十二對氮化鎂氮化鎵緩衝層的三五族氮化物材料,或是利用有機化學氣相沉積系統在圖案化藍寶石基板上成長出三五族氮化物材料。我們利用一些分析設備來對我們所成長出來的磊晶品質上的分析,而分析的設備包含霍耳量測、光致發光分析、高解析度X 光繞射儀、原子力顯微鏡,以及掃描式電子顯微鏡。接著,我們將這些具有氮化鎂氮化鎵雙緩衝層或是圖案化藍寶石基板的樣本製作成蕭基二極體和金半金光檢測器,然後對它做元件特性上的分析。
(I) 我們比較具有十二對氮化鎂氮化鎵緩衝層和一般傳統低溫緩衝層的氮化物材料所製造出來的金半金紫外光檢測器元件的特性,我們可以發現利用十二對氮化鎂氮化鎵緩衝層可以降低暗電流和提升紫外光對可見光比大約一個數量級。在一伏特的偏壓下,我們可以發現具有一般傳統低溫緩衝層的光檢測器的雜訊等效功率和檢測率分別為2.19 10-13 W和2.04 1012 cmHz0.5W-1,然而具有十二對氮化鎂氮化鎵緩衝層的光檢測器的雜訊等效功率和檢測率分別為1.11 10-13 W和6.05 1012 cmHz0.5W-1。而在蕭基二極體元件上,我們可以發現利用十二對氮化鎂氮化鎵緩衝層可以提高蕭基能障的高度。
(II) 我們比較在圖案化藍寶石基板和一般傳統藍寶石基板上成長的氮化物材料所製造出來的金半金紫外光檢測器元件的特性,我們可以發現利用圖案化藍寶石基板可以降低暗電流和提升紫外光對可見光比大約兩個數量級。在一伏特的偏壓下,我們可以發現利用一般傳統藍寶石基板的光檢測器的雜訊等效功率和檢測率分別為6.30 10-13 W和1.06 1012 cmHz0.5W-1,然而利用圖案化藍寶石基板的光檢測器的雜訊等效功率和檢測率分別為2.77 10-14 W和2.42 1013 cmHz0.5W-1。而在蕭基二極體元件上,我們可以發現利用圖案化藍寶石基板亦可以提高蕭基能障的高度。
In this thesis, the nitride-based III-V alloys with a 12-pair MgxNy/GaN double buffer layer or pattern sapphire substrate had been grown and characterized by metal organic chemical vapor deposition system (MOCVD). Several analysis techniques, such as Hall measurement, photoluminescence (PL), X-ray diffraction (XRD), and atomic force microscopy (AFM) had also been performed to characterize the crystal quality of these epitaxial layers. The Schottky barrier diodes and metal-semiconductor-metal (MSM) photodetectors were then fabricated.
(I) GaN-based metal-semiconductor-metal ultraviolet (UV) photodetectors (PDs) with 12-pair MgxNy/GaN buffer layer and low temperature GaN (LT-GaN) buffer layer were both fabricated and characterized. It was found that we can reduce dark leakage current and enhance UV-to-visible rejection ratio both by about one order of magnitude by using a 12-pair MgxNy/GaN buffer layer. With 1 V applied bias, it was found that noise equivalent power and normalized detectivity of the PD with LT-GaN buffer layer were 2.19 10-13 W and 2.04 1012 cmHz0.5W-1, respectively, while those of the PD with 12-pair MgxNy/GaN buffer layer were 1.11 10-13 W and 6.05 1012 cmHz0.5W-1, respectively. For the Schottky diode, it was found that we could use the 12-pair MgxNy/GaN buffer layer to enhance the Shottky barrier height.
(II) GaN-based metal-semiconductor-metal ultraviolet (UV) photodetectors (PDs) prepared on patterned sapphire substrate (PSS) and conventional flat sapphire substrate were both fabricated and characterized. It was found that we can reduce dark leakage current and enhance UV-to-visible rejection ratio both by about two orders of magnitude by using PSS. With 1 V applied bias, it was found that noise equivalent power and normalized detectivity of the PD prepared on conventional flat sapphire substrate were 6.30 10-13 W and 1.06 1012 cmHz0.5W-1, respectively, while those of the PD prepared on PSS were 2.77 10-14 W and 2.42 1013 cmHz0.5W-1, respectively. For the Schottky diode, it was also found that we could use the pattered sapphire substrates to enhance the Shottky barrier height.
[1] H. Morkoe, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys., Vol. 76, 1363 (1994)
[2] F. Ren, C. R. Abernathy, J. M. Van Hove, P. P. Chow, R. Hickman, J. J. Klaasen, R. F. Kopf, H. Cho, K. B. Jung, J. R. La Roche, R. G. Wilson, J. Han, R. J. Shul, A. G. Baca, and S. J. Pearton, MRS Internet J. Nitride Semicon. Res., Vol. 3, 41 (1998)
[3] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and K. T. Ilson, Appl. Phys. Lett., Vol. 62, 1786 (1993)
[4] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm, and M. S. Shur, Appl. Phys. Lett., Vol. 65, 1121 (1994)
[5] M. A. Khan, Q. Chen, M. S. Shur, B. T. Dermott, J. A. Higgins, J. Burm, W. Schaff, and L. F. Eastman, Electron. Lett., Vol. 32, 357 (1996)
[6] E. Fred Schubert, “Light-Emitting Diodes”, (Cambridge University Press, 2003)
[7] S. Nakamura, S. Pearton, and G. Fasol, “The Blue Laser Diode”, (Springer Heidelberg,c2000)
[8] S. Strite, M. E. Lin, and H. Morkoc, Thin Solid Films, Vol. 231, 197 (1993)
[9] R. F. Davis, Proc. IEEE , Vol. 5, 702 (1991)
[10] Bernard Gil, Group III Nitride Semiconductor Compounds (Oxford, New York, 1998)
[11] B. Tabbert, C. Hicks, E. Bartley, H. Wu, R. Metzler, and A. O. Goushcha, SPIE., Vol. 5726, 10 (2005)
[12] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, Y. C. Lin, S. H. Liu, and C.S. Chang, IEEE Journal of Quantum Electronics, Vol. 39, 681 (2003)
[13] S. S. Liu, P. W. Li, W. J. Lin, Materials Science and Engineering, B 122, 196-200 (2005)
[14] Jun Ohsawa, Takahiro Kozawa, Osamu Ishiguro, and Hiroshi Itoh, Jpn. J. Appl. Phys., Vol. 45, L435 (2006)
[15] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, Appl. Phys. Lett., Vol. 72, 542 (1998)
[16] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimuto, T. Kozaki, H. Umemoto, M. Sano, K. Chocho, Appl. Phys. Lett., Vol. 72, 211 (1998).
[17] D. S. Wuu, R. H. Horng, W. H. Tseng, W. T. Lin, C. Y. Kung, J. Crystal Growth, Vol. 220, 235 (2000).
[18] D. Byun, G. Kirn, D. Lira, D. Lee, I. H. Choi, D. Park, D. W. Kum, Thin Solid Films, Vol. 289, 256 (1996).
[19] K. Uchida, K. Nishida, M. Kondo, H. Munekata, J. Crystal Growth, Vol. 189/190, 270 (1998).
[20] T. Kachi, K. Tomita, K. Itoh, H. Tadano, Appl. Phys. Lett., Vol. 72, 704 (1998).
[21] T. Wang, Y. Morishima, N. Naoi, S. Sakai, J. Crystal Growth, Vol. 213, 188 (2000).
[22] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts,
(Clarendon Press, Oxford, 1998)
[23] S. M. Sze, Semiconductor Device Physics and Technology, 160
(1985)
[24] S. M. Sze, Semiconductor Device Physics and Technology, 278
(1985)
[25] S. M. Sze, D. J. Coleman, JR. and A. Loya, Solid-State Electronics, Vol. 14, 1209 (1971)
[26] H. Norde, J. Appl. Phys., Vol. 16, 444 (1996)
[27] S.K. Cheung, N.W. Cheung, Appl. Phys. Lett., Vol. 49, 85 (1986)
[28] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis and J. C.Campell, J.,Appl. Phys. Lett., Vol. 83, 6148 (1998)
[29] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, Appl. Phys. Lett., Vol. 79, 1417 (2001)
[30] T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys., Part 1 Vol. 38, 3976 (1999).
[31] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T.
Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett., Vol. 70, 1417 (1997).
[32] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T.
Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett., Vol. 72, 211 (1998).
[33] T. Kachi, K. Tomita, K. Itoh, and H. Trando, Appl. Phys. Lett., Vol. 72, 704 (1998).
[34] S. Sakai, T. Wang, Y. Morishima, and N. Naoi, J. Cryst. Growth, Vol. 221, 334 (2000).
[35] C. H. Kuo, S. J. Chang, Y. K. Su, C. K. Wang, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. M. Tsai, and C. C. Lin, Solid-State Electron., Vol. 47, 2019 (2003).
[36] S. C. Wei, Y. K. Su, S. J. Chang, Shi-Ming Chen, and Wen-Liang Li, IEEE Trans. Electron Devices, Vol. 52, 1104 (2005).
[37] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaar, and J. S. Speck, Appl. Phys. Lett., Vol. 68, 643 (1996).
[38] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, Appl. Phys. Lett., Vol. 79, 1417 (2001).
[39] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, and J. A. Munoz, Electron. Lett., Vol. 36, 1581 (2000).
[40] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimuto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Appl. Phys. Lett., Vol. 72, 211 (1998).
[41] K. Tadatomo, H. Okagawa, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo and T. Taguchi, Phys. Stat. Sol. (a), Vol. 188, 121 (2001).
[42] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen, and C. H. Liu, Solid State Electron., Vol. 47, 1539 (2003).
[43] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, IEEE Photon. Technol. Lett., Vol. 17, 288 (2005).
[44] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin, and J. C. Ke, IEEE J. Quan. Electron., Vol. 39, 1439 (2003)
[45] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaar, and J. S. Speck, Appl. Phys. Lett. Vol. 68, 643 (1996).
[46] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, Appl. Phys. Lett., Vol. 79, 1417 (2001).
[47] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, and J. A. Munoz, Electron. Lett., Vol. 36, 1581 (2000).