| 研究生: |
陳佳偉 Chen, Chia-wei |
|---|---|
| 論文名稱: |
固定化脂肪分解酵素應用於大豆油水解之研究 A Study of Immobilized Candida rugosa Lipase for Soybean Oil Hydrolysis |
| 指導教授: |
吳文騰
Wu, Wen-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 酵素固定化 、脂肪分解酵素 、磁性粒子 、動力學模型 |
| 外文關鍵詞: | Magnetic particles, Immobilization, Lipase, Kinetic model |
| 相關次數: | 點閱:82 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於脂肪分解酵素酵素催化油脂水解生產脂肪酸之製程,具有反應條件溫和及副產物少的優點,優於用化學觸媒催化反應之製程,且酵素具良好生物可分解性,對環境較友善,然酵素價格昂貴,增加製程生產成本。為降低酵素製程的生產成本並提高其發展潛力,因此發展固定化酵素技術,提高酵素穩定性與重覆使用性。由於氧化鐵(Fe3O4)磁性奈米粒子具高化學穩定性與生物相容性,且具備磁性易回收,近年來被廣泛作為酵素固定化之載體。
在本研究中,將脂肪分解酵素(lipase)固定化在氧化鐵(Fe3O4)磁性奈米粒子上,並應用於大豆油脂水解生成脂肪酸之研究。脂肪分解酵素經碳二醯胺(carbodiimide)活化後,可鍵結於氧化鐵磁性奈米粒子上。由X-ray繞射光譜(XRD)、穿透式電子顯微鏡(TEM)與超導量干涉磁量儀(SQUID)之物性分析結果,顯示固定化前後磁性奈米粒子結構不變,為奈米級程度,且具有超順磁性。由傅立葉轉換紅外線光譜儀(FTIR)的分析,脂肪分解酵素以共價鍵結在磁性奈米粒子上。在奈米粒子添加濃度為40 mg/mL、固定化pH值為7、固定化時間為60分鐘及固定化溫度為30℃的酵素固定化條件下,固定化酵素具有較高的蛋白質固定量與最佳水解活性。將製備之固定化酵素應用於大豆油水解反應之研究,利用實驗設計法探討反應溫度、油水莫耳比與固定化酵素量對於油脂水解反應之影響,並建立動力學模型描述此反應之行為。由實際實驗值與模型計算值的相關係數(R2)為0.97,說明此模型的可信度。進一步以此模型預測油脂水解反應之最適化反應條件,在此條件下反應23小時左右,脂肪酸產率可達99%,實驗結果與模型預測預測結果相當一致。在酵素之重複使用性實驗部份,本研究所製備的固定化酵素,在重覆使用5次後,其脂肪酸產率為第一次使用之43 %。
The performance of enzyme in catalyzing the oil hydrolysis reaction is better than chemical catalyst, because the enzymatic reaction can operate under a mild reaction condition, produce few by-products, and be friendly to environment. The main purpose of this thesis is to reduce the cost of enzymatic process and to increase the stability and reusability of enzyme. Recently, the technique of immobilization enzyme has been investigated and Fe3O4 magnetic nanoparticles has a novel matrix of immobilization because it has chemical stability and biocompatibility.
In this study, the Candida rugosa lipase was immobilized onto magnetic nanoparticles by carbodiimide activation and employed to catalytically produce fatty acids by hydrolysis of soybean oil. The physical property of magnetic nanoparticles was analyzed by transmission electron microscopy (TEM), X-ray diffraction (XRD) and magnetic measurement (SQUID). It showed that the size and structure of magnetic nanoparticles did not significantly change and possessed superparamagnetic characteristic after enzyme immobilization. Lipase bound onto the magnetic nanoparticles was confirmed by the Fourier transform infrared (FTIR) spectroscopy measurement. The operation conditions for lipase immobilization were optimized to obtain the highest protein loading and specific activity. Hence the immobilized lipase was further employed to investigate the kinetics of the hydrolysis of soybean oil. The hydrolysis reaction was studied at the different levels of reaction temperature, molar ratio of oil to water and lipase amount . Therefore, a kinetic model coupling with the mentioned reaction parameters were proposed to describe the enzymatic hydrolysis of soybean oil. Since the kinetic model met the experiments well, it was applicable to determine the optimal operating condition. Under the optimal reaction conditions, the FFA yield could reach 99% after reaction for 23 hours. An experimental verification was carried out and well matched the model prediction. In reusability examination, it still retained 43% of its initial yield after being used 5 times.
Abudiab, T. and R. R. Beitle (1998). "Preparation of magnetic immobilized metal affinity separation media and its use in the isolation of proteins. "Journal of Chromatography A 795(2): 211-217.
Al-Zuhair, S., K. B. Ramachandran, et al. (2008). "Effect of enzyme molecules covering of oil-water interfacial area on the kinetic of oil hydrolysis." Chemical Engineering Journal 139(3): 540-548.
Albasi, C., N. Bertrand, et al. (1999). "Enzymatic hydrolysis of sunflower oil in a standardized agitated tank reactor." Bioprocess Engineering 20(1): 77-81.
Bacri, J. C., R. Perzynski, et al. (1990). "IONIC FERROFLUIDS - A CROSSING OF CHEMISTRY AND PHYSICS." Journal of Magnetism and Magnetic Materials 85(1-3): 27-32.
Brockman, H. L., W. E. Momsen, et al. (1988). "LIPID-LIPID COMPLEXES- PROPERTIES AND EFFECTS ON LIPASE BINDING TO SURFACES." Journal of the American Oil Chemists Society 65(6): 891-896.
Burns, P. C., F. C. Hawthorne, et al. (1997). "Donathite discredited: A mixture of two spinels." Neues Jahrbuch Fur Mineralogie-Monatshefte(4): 163-174.
Chiou, S. H. and W. T. Wu (2004). "Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups." Biomaterials 25(2): 197-204.
Habulin, M. and Z. Knez (2002). "High-pressure enzymatic hydrolysis of oil. "European Journal of Lipid Science and Technology 104(7): 381-386.
Hermansyah, H., M. Kubo, et al. (2006). "Mathematical model for stepwise hydrolysis of triolein using Candida rugosa lipase in biphasic oil-water system." Biochemical Engineering Journal 31(2): 125-132.
Hill, K. (2000). "Fats and oils as oleochemical raw materials." Pure and Applied Chemistry 72(7): 1255-1264.
Huang, S. H., M. H. Liao, et al. (2003). "Direct binding and characterization of lipase onto magnetic nanoparticles." Biotechnology Progress 19(3): 1095-1100.
Jaeger, K. E. and M. T. Reetz (1998). "Microbial lipases form versatile tools for biotechnology." Trends in Biotechnology 16(9): 396-403.
Kardash, E. and Y. I. Tur'yan (2005). "Acid value determination in vegetable oils by indirect titration in aqueous-alcohol media." Croatica Chemica Acta 78(1): 99-103.
Kim, J. B., J. W. Grate, et al. (2008). "Nanobiocatalysis and its potential applications." Trends in Biotechnology 26(11): 639-646.
Koneracka, M., P. Kopcansky, et al. (1999). "Immobilization of proteins and enzymes to fine magnetic particles." Journal of Magnetism and Magnetic Materials 201: 427-430.
Koneracka, M., P. Kopcansky, et al. (2002). "Direct binding procedure of proteins and enzymes to fine magnetic particles." Journal of Magnetism and Magnetic Materials 252(1-3): 409-411.
Kubow, S. (1996). "The influence of positional distribution of fatty acids in native, interesterified and structure-specific lipids on lipoprotein metabolism and atherogenesis." Journal of Nutritional Biochemistry 7(10): 530-541.
Lee, D. G., K. M. Ponvel, et al. (2009). "Immobilization of lipase on hydrophobic nano-sized magnetite particles." Journal of Molecular Catalysis B-Enzymatic 57(1-4): 62-66.
Malcata, F. X., H. R. Reyes, et al. (1990). "IMMOBILIZED LIPASE REACTORS FOR MODIFICATION OF FATS AND OILS - A REVIEW." Journal of the American Oil Chemists Society 67(12): 890-910.
Mateo, C., J. M. Palomo, et al. (2007). "Improvement of enzyme activity, stability and selectivity via immobilization techniques." Enzyme and Microbial Technology 40(6): 1451-1463.
Mehta, R. V., R. V. Upadhyay, et al. (1997). "Direct binding of protein to magnetic particles." Biotechnology Techniques 11(7): 493-496.
Pandey, A., S. Benjamin, et al. (1999). "The realm of microbial lipases in biotechnology." Biotechnology and Applied Biochemistry 29: 119-131.
Pencreac'h, G. and J. C. Baratti (2001). "Comparison of hydrolytic activity in water and heptane for thirty-two commercial lipase preparations." Enzyme and Microbial Technology 28(4-5): 473-479.
Rodrigues, R. C., J. M. Bolivar, et al. (2009). "Positive effects of the multipoint covalent immobilization in the reactivation of partially inactivated derivatives of lipase from Thermomyces lanuginosus." Enzyme and Microbial Technology 44(6-7): 386-393.
Schmid, R. D. and R. Verger (1998). "Lipases: Interfacial enzymes with attractive applications." Angewandte Chemie-International Edition 37(12): 1609-1633.
Sharma, E., S. C. Rai, et al. (2001). "Soil, water and nutrient conservation in mountain farming systems: Case-study from the Sikkim Himalaya." Journal of Environmental Management 61(2): 123-135.
Shaw, S. Y., Y. J. Chen, et al. (2006). "Preparation and characterization of Pseudomonas putida esterase immobilized on magnetic nanoparticles." Enzyme and Microbial Technology 39(5): 1089-1095.
Sonntag, N. O. V. (1984). "NEW DEVELOPMENTS IN THE FATTY-ACID INDUSTRY IN AMERICA." Journal of the American Oil Chemists Society 61(2): 229-232.
Ting, W. J., K. Y. Tung, et al. (2006). "Application of binary immobilized Candida rugosa lipase for hydrolysis of soybean oil." Journal of Molecular Catalysis B-Enzymatic 42(1-2): 32-38.
Tsai, S. W. and C. S. Chang (1993). "KINETICS OF LIPASE-CATALYZED HYDROLYSIS OF LIPIDS IN BIPHASIC ORGANIC AQUEOUS SYSTEMS." Journal of Chemical Technology and Biotechnology 57(2): 147-154.
Verger, R., M. C. E. Mieras, et al. (1973). "ACTION OF PHOSPHOLIPASE A AT INTERFACES." Journal of Biological Chemistry 248(11): 4023-4034.
Villeneuve, P., J. M. Muderhwa, et al. (2000). "Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches." Journal of Molecular Catalysis B-Enzymatic 9(4-6): 113-148.
Wang, Y. J., J. Y. Sheu, et al. (1988). "LIPASE-CATALYZED OIL HYDROLYSIS IN THE ABSENCE OF ADDED EMULSIFIER." Biotechnology and Bioengineering 31(6): 628-633.
Yong, Y., Y. X. Bai, et al. (2008). "Preparation and application of polymer-grafted magnetic nanoparticles for lipase immobilization." Journal of Magnetism and Magnetic Materials 320(19): 2350-2355.
You, L. L. and B. S. Baharin (2006). "Effects of enzymatic hydrolysis on crude palm olein by lipase from Candida rugosa." Journal of Food Lipids 13(1): 73-87.
Guerreiro L., Castanheiro JE., Fonseca IM., Martin-Aranda RM., Ramos AM.,Vital J (2006). "Transesterification of soybean oil over solfonic acid functionalized polymer membranes." Catalyst Today 118: 166-171.
Levenspiel, Chemical Reaction Engineering, third edition, Willey, (1999).
劉英俊,酵素工程,中央圖書出版社,2002 年。
陳國誠,生物固定化技術與產業應用,茂昌圖書有限公司,2000年。
馬振基,奈米材料科技原理與應用,全華科技出版社,2003 年。
莊萬發,超微粒子理論應用,復漢出版社,2005 年。
尹邦躍,奈米時代,五南圖書出版社,2002 年。
張立德,奈米材料,五南圖書出版社,2002 年。
黃忠良,磁性流體理論應用,復漢出版社,1989 年。
鄭豐裕,四氧化三鐵磁性奈米粒子之製備及其在生物醫學上之應用,碩士論文,國立成功大學化學研究所,2006 年。
張揚狀,表面被覆幾丁聚醣磁性之多功能磁性奈米載體的製備與應用,碩士論文,國立成功大學化學工程研究所,2005 年。
洪佃玠,利用幾丁聚醣固定脂肪分解酵素之研究,碩士論文,國立清華大學化學工程研究所,2002 年。
徐裕翔,以聚丙烯腈奈米纖維膜固定化脂肪分解酶應用於三酸甘油酯水解酵素製程開發之研究,碩士論文,國立成功大學化學工程研究所,2006年。
范逸軒,脂肪分解酵素Pseudomonas cepacia 固定於奈米纖維膜並應用在生質柴油製程之研究,碩士論文,國立成功大學化學工程研究所,2008年。
李智傑,酸性觸媒在生質柴油製程之研究,碩士論文,國立成功大學化學工程研究所,2008 年。
李昇峰,聚丙烯腈奈米纖維膜於脂肪分解酵素固定化之應用,博士論文,國立成功大學化學工程研究所,2009 年。
黃世宏,氧化鐵磁性奈米粒子在酵素固定化及分離上之應用研究,碩士論文,成功大學化學工程研究所,2003年。
許祐川,製備磁性奈米粒子並應用於藥物的投遞及酵素的固定化,碩士論文,成功大學化學研究所,2004年。
呂鋒洲、林仁混,基礎酵素學,聯經出版公司,1991年。
陳昭燕,「生化反應之催化劑-酵素」,科學發展,370期,2003年。