簡易檢索 / 詳目顯示

研究生: 愛蘇多
Erik Sugianto
論文名稱: 不同船型上海洋垃圾清潔輸送帶的實驗與數值研究
Experimental and Numerical Study of Wing Conveyor on Various Types of Ship Hulls for Marine Debris Cleaning
指導教授: 陳政宏
Chen, Jeng-Horng
學位類別: 博士
Doctor
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 166
中文關鍵詞: 海洋垃圾傳送帶機翼收集
外文關鍵詞: marine debris, ship, conveyor, wing, collecting
ORCID: https://orcid.org/0000-0001-7991-9471
ResearchGate: https://www.researchgate.net/profile/Erik-Sugianto
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 海洋垃圾是一個尚未解決的全球性問題,這促進了海洋垃圾清潔技術的出現。本研究對防止和收集塑料污染的技術進行了審查,結果顯示,海洋垃圾清潔技術被歸類為專注於海洋污染防治的技術和收集技術,其中之一是傳送船。然而,尚未研究輸送機在收集廢物方面的效率。在前人的研究上大多應用於湍急水流和波浪的地方,而在沒有水流和波浪的地方,例如湖泊、靜止的河流和其他平靜的水域,並沒有過多論述。本研究提出了一種收集海洋垃圾的船舶及系統,其中結合了船、輸送機和機翼。輸送機功能為將海面的海洋垃圾裝載到船上,而機翼則用於增加輸送機收集海洋垃圾的能力。
    本研究設計了實驗研究,以研究機翼輸送機在海洋垃圾收集中的有效性。在研究中使用該模型的幾種變體進行了實驗,即帶無翼輸送機的雙體船、使用實心翼的帶輸送機的雙體船和使用空心翼的帶輸送機的雙體船。每個模型都被設計成模型變體,以觀察對輸送機在海洋垃圾收集中的有效性。然後再對當前研究進行數值模擬,以研究輸送機、船舶及其環境之間的阻力、速度等值線和流動模式等流體動力學特性,並研究機翼輸送機在海洋垃圾收集中的效率。在數值模擬方面,海洋垃圾接近傳送帶的難易程度以及其流型特徵、速度等值線等是本研究專注重點。其中,速度等值線用於分析海洋廢物接近輸送機的速度,而阻力分析則用於了解能源消耗的影響。接下來,使用其他研究的實驗模型對數值模擬過程進行驗證。此外,還提出了可持續海洋垃圾管理數字平台的商業模式,以支持海洋垃圾清理。

    Marine debris is a global problem that has not been resolved. This has encouraged the emergence of marine debris cleaning technologies. A review of technologies to prevent and collect plastic pollution has been carried out. The results showed technologies were categorized as technologies focusing on marine pollution prevention, and collection technologies, one of which is a conveyor ship. However, how effective conveyors are in collecting waste has not been studied. These previous studies also can only be applied in locations that have large currents and waves; the idea is not applicable to locations without currents and waves such as lakes, sedentary rivers, and other calm waters. This thesis proposed a ship and system for collecting marine debris. It combines ship, conveyor, and wing for their system. The conveyor is used to load the marine debris from the sea surface into the ship. Then the wing is used to increase the conveyor capability to collect marine debris.
    Experimental study was conducted to investigate the wing conveyors' effectiveness in marine debris collecting. Experiments were carried out using several variations of the model, namely catamarans with conveyors without wings, catamarans with conveyor using solid wings, and catamarans with conveyor using hollow wings. Each model is made into several model variations to determine the effect on the conveyors' effectiveness in marine debris collecting. Then, numerical simulation of the current research was conducted to investigate hydrodynamics characteristics such as resistance, velocity contour, and flow patterns between conveyors, ships, and their environment, as well as to investigate the wing conveyors' effectiveness in marine debris collecting. The flow pattern characteristics that are used to analyze how easy it is for waste to approach the conveyor, velocity contour which is used to analyze how fast the ocean waste is approaching the conveyor, and resistance which will affect energy consumption. Next, validation of the numerical simulation process is carried out with experimental models from other studies. Furthermore, a business model of digital platform for sustainable marine debris management is also proposed to support marine debris cleaning.

    摘要 I Abstract II Acknowledgment IV Table of Contents V List of Tables VIII List of Figures IX Nomenclature XV Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Objective of the research 3 1.3 Thesis structure 4 Chapter 2 Literature Review of Cleaning Technology for Marine Debris 6 2.1 Distribution of Marine Debris 6 2.2 Current Marine Debris Cleaning Technology 7 Watercourse garbage clearing boat 13 2.3 Status of Marine Debris Cleaning Technology 16 2.4 Evaluation of Marine Debris Cleaning Technology 21 Watercourse garbage clearing boat 26 2.5 Summary of Literature Review 32 Chapter 3 Methodology 35 3.1 Experimental Design 35 3.1.1 Models 36 3.1.2 Facilities 41 3.1.3 Experimental procedures 43 3.2 Numerical Simulations 44 3.2.1 Modelling 45 3.2.1.1 Conveyor 46 3.2.1.2 Wing conveyor shape type 48 3.2.1.3 Wing conveyor length type 49 3.2.1.4 Wing conveyor angle type 52 3.2.1.5 Hull number of ship 54 3.2.1.6 Type of portable conveyor placement 57 3.2.1.7 Monohull hull type 58 3.2.1.8 Catamaran type 59 3.2.2 Computational domain 60 3.2.3 Solver 62 3.2.4 Grid independent Test 64 3.2.5 Validation 70 Chapter 4 Experiments of Wing Conveyor 76 4.1 Experimental Results of Solid Wing Conveyor on Marine Debris Collection 76 4.2 Experimental Analysis of Solid Wing Conveyor on Marine Debris Collection 80 4.3 Experimental Results of Hollow Wing Conveyor on Marine Debris Collection 84 4.4 Experimental Analysis of Hollow Wing Conveyor on Marine Debris Collection 92 4.5 Summary of Experiments of Wing Conveyor on Marine Debris Collection 95 Chapter 5 Numerical Investigation of Wing Conveyor 98 5.1 Wing shape type effect on ocean waste collection behavior 98 5.2 Wing length effect on ocean waste collection behavior 101 5.3 Wing angle effect on ocean waste collection behavior 107 5.4 Summary of Numerical Investigation of Wing Conveyor 113 Chapter 6 Numerical Investigation of Ship Using Conveyor on Ocean Waste Collection 115 6.1 Hull Number Effect on Ocean Waste Collection Behavior 115 6.2 Effect of Portable Conveyor Placement on Ocean Waste Collection Behavior 127 6.3 Catamaran Hull Type Effect on Ocean Waste Collection Behavior 132 6.4 Monohull Type Effect on Ocean Waste Collection Behavior 136 6.5 Comparison between Catamaran and Monohull Type Effect 139 6.6 Summary of Numerical Investigation of Ship Using Conveyor on Ocean Waste Collection 143 Chapter 7 Conclusion and Further Work 147 7.1 Conclusion 147 7.2 Further Work and recommendations 153 Reference 156

    [1] United Nations. Goals 14 Conserve and sustainably use the oceans, seas and marine resources for sustainable development. 2020. https://www.unep.org/explore-topics/sustainable-development-goals/why-do-sustainable-development-goals-matter/goal-14. Accessed 14 Dec 2021.
    [2] Purba NP, Pranowo WS, Sahat MS, Faizal I, Jasmin HH, Handyman DI, et al. Trajectory of microplastics at Savu Sea Marine National Park, East Nusa Tenggara. Depik J. Ilmu-Ilmu Perairan, Pesisir dan Perikanan. 2019; 8(2):125–134. doi:10.13170/depik.8.2.13423.
    [3] Purba NP, Syamsuddin ML, Sandro R, Pangestu IF, Prasetio MR. Distribution of marine debris in Biawak Island, West Java, Indonesia. World Sci News. 2017;66:281–292.
    [4] Rachmat SLJ, Purba NP, Agung MK, Yuliadi LP. Karakteristik sampah mikroplastik di Muara Sungai DKI Jakarta. Depik J. Ilmu-Ilmu Perairan, Pesisir dan Perikanan. 2019; 8(1):9–17. doi:10.13170/depik.8.1.12156.
    [5] Cordova MR, Wahyudi AJ. Microplastic in the deep-sea sediment of Southwestern Sumatra Waters. Mar Res Indones. 2016;41(1):27–35. doi:10.14203/mri.v41i1.99.
    [6] Borrelle SB, Ringma J, Law KL, Monnahan CC, Lebreton L, McGivern A, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science. 2020;369:1515–1518. doi:https://doi.org/10.1126/science.aba3656.
    [7] Shim WJ, Thomposon RC. Microplastics in the ocean. Arch Environ Contam Toxicol. 2015;69(3):265–268. doi:10.1007/s00244-015-0216-x.
    [8] Ellen Mac Arthur Foundation, SUN, McKinsey Center for Business and Environment, Growth within: a circular economy vision for a competitive europe. 2015.
    [9] Lebreton L, Slat B, Ferrari F, Aitken J, Marthouse R, Hajbane S. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci Rep. 2018;8:4666. https://doi.org/10.1038/s41598-018-22939-w.
    [10] Maes T, Jessop R, Wellner N, Haupt K, Mayes AG. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Sci Rep. 2017;7:44501. https://doi.org/10.1038/srep44501.
    [11] Lebreton L Egger M., Slat B. A global mass budget for positively buoyant macroplastic debris in the ocean. Sci Rep. 2019;9:12922. https://doi.org/10.1038/s41598-019-49413-5.
    [12] Cai LZ, Hwang JS, Dahms HU, Fu SJ, Chen XW, Wu C. Does high organic matter content affect polychaete assemblages in a Shenzhen Bay Mudflat, China?. J Mar Sci Technol. 2013;21(7):274-284. doi: 10.6119/JMST-013-1223-5.
    [13] Sedigheh S, Sedigheh BL, Hakimeh A, Javad DK, Kamal G. Accumulation and bioavailability of heavy metals (cadmium, chromium, nickel, lead and zinc) in water and sediment samples in the musa creek, northwest coasts of the Persian Gulf. J Mar Sci Technol. 2021;29(5):666-672. doi: 10.51400/2709-6998.1591.
    [14] Yang YL, Shyu WH, Li CH, Ding JF. Environmental risk perceptions of port residents: an empirical study on east side of Keelung Port. J Mar Sci Technol. 2016;24(4):669-681.doi: 10.6119/JMST-015-1230-1.
    [15] Schmaltz E, Melvin EC, Diana Z, Gunady EF, Rittschof D, Somarelli JA, et al. 2020. Plastic pollution solutions: emerging technologies to prevent and collect marine plastic pollution. Environ Int. 2020;144:106067.S. https://doi.org/10.1016/j.envint.2020.106067.
    [16] Winterstetter A, Grodent M, Kini V, Ragaert K, Vrancken KC. A review of technological solutions to prevent or reduce marine plastic litter in developing countries. Sustainability. 2021;13(9):4894. https://doi.org/10.3390/su13094894.
    [17] Slat B. How the oceans can clean themselves: a feasibility study. Ocean Cleanup, Delft, Netherlands. 2014.
    https://www.researchgate.net/publication/309202751_Feasibility_Study_-_The_Ocean_Cleanup. Accessed 14 Dec 2021.
    [18] Shaw H, Chen W, Li Y. A CFD study on the performance of a passive ocean plastic collector under rough sea conditions. Ocean Eng. 2019;188:106243. https://doi.org/10.1016/j.oceaneng.2019.106243.
    [19] Najafi A, Saeed SM. RANS simulation of hydrofoil effects on hydrodynamic coefficients of a planing catamaran. Brodogradnja. 2016;67(1):43–66. https://hrcak.srce.hr/154715.
    [20] Jasmin HH, Purba NP, Harahap SA, Pranowo WS, Syamsudin ML, Faizala I. The model of macro debris transport before reclamation and in existing condition in Jakarta Bay. Jurnal Ilmu Dan Teknologi Kelautan Tropis. 2019, 11(1), 131–140. https://doi.org/10.29244/jitkt.v11i1.24777.
    [21] Purba NP, Widodo SP et al. Trajectory of microplastics at Savu Sea Marine National Park, East Nusa Tenggara. Jurnal Ilmu-Ilmu Perairan, Pesisir dan Perikanan. 2019, 8(2): 125–34. https://doi.org/10.13170/depik.8.2.13423.
    [22] Purba NP, Faizal I. Performance of float artificial debris ( FAD )with Lagrangian Concept. AACL Bioflux. 2019, 12(6):2236-2242. . http://www.bioflux.com.ro/docs/2019.2236-2242.pdf.
    [23] Lebreton L, Slat B, Ferrari F, Sainte-Rose B, Aitken J, Marthouse R, Hajbane S, Cunsolo S, Schwarz A, Levivier A, Noble K, Debeljak P, Maral H, Schoeneich-Argent R, Brambini R, Reisser J. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific Reports. 2018, 8(1). https://doi.org/10.1038/s41598-018-22939-w.
    [24] Galgani F, Brien A S-o, Weis J, Ioakeimidis C, Schuyler Q, Makarenko I, Griffith H, Bondareff J, Vethaak D, Deidun A, Sobral P, Topouzelis K, Vlahos P, Lana F, Hassellov M, Gerigny O, Arsonina B, Ambulkar A, Azzaro M, & Bebianno MJ (2021) Are litter, plastic and microplastic quantities increasing in the ocean?. Microplastics and Nanoplastics 1(1). https://doi.org/10.1186/s43591-020-00002-8.
    [25] Bryan DR, George ZP. Marine surface debris deflector. 1983. https://patents.google.com/patent/US4535717A/en. Accessed 14 Dec 2021.
    [26] Ribic CA, Dixon TR, Vining I. Marine debris survey manual. 1992. https://spo.nmfs.noaa.gov/sites/default/files/tr108opt.pdf. Accessed 12 Dec 2021
    [27] Morin RJ. Marine vessel for collecting floating debris. 2003. https://patents.google.com/patent/US6669841B2/en. Accessed 14 Dec 2021.
    [28] Superboats. Litter boms. 2004. https://superfloats.com/wp-content/uploads/2021/02/Litter-Booms.pdf. Accessed 12 Dec 2021 .
    [29] Ji T. A barge for treating marine waste. 2017. https://patents.google.com/patent/KR100710736B1/en. Accessed 14 Dec 2021
    [30] Andrew WG. Wastewater treatment vessel. 2009. https://patents.google.com/patent/US7547392B2/en. Accessed 14 Dec 2021.
    [31] Wulandari AI, Setiawan WS, Hidayat TH, Fauzi AF. DESAIN skimmer boat (Kapal Pengambil Sampah) Daerah Perairan sungai di kalimantan timur. Wave: Jurnal Ilmiah Teknologi Maritim. 2020. 14 (1). https://doi.org/10.29122/jurnalwave.v14i1.4087.
    [32] Jung RT, Sung HG, Chun TB, Keel SI. Practical engineering approaches and infrastructure to address the problem of marine debris in Korea. Mar Pollut Bull. 2020, 60(9):1523-32. https://doi.org/10.1016/j.marpolbul.2010.04.016.
    [33] Huajin L, Guan Y, Zhang Z. Water surface garbage cleaning ship. 2010. https://patents.google.com/patent/CN102020004B/en. Accessed 14 Dec 2021.
    [34] Griffith T, Richard JH, Roger DT. Floating marine debris trap. 2011. https://patents.google.com/patent/US20110198302A1/en. Accessed 14 Dec 2021
    [35] Vincent TG. Marine debris grapple device and method. 2012. https://patents.google.com/patent/US20120183384A1/en. Accessed 14 Dec 2021
    [36] Hadi F, Siti DL, Danang MP. Cost benefit study of waste management on land and at sea. 2014. https://repository.its.ac.id/81919/. Accessed 12 Dec 2021.
    [37] Wang Y. Watercourse garbage clearing boat. 2013. https://patents.google.com/patent/CN202828028U/en. Accessed 14 Dec 2021.
    [38] Sangpyo P, Young NK, Suk SB, Hoon LD, Fund CS, Tai C. Ship for processing marine waste. 2013. https://patents.google.com/patent/CN103313909A/en. Accessed 14 Dec 2021.
    [39] Horton RP, Michael TY, Victor JT. Floating debris harvesting system. 2014. Horton RP, Michael TY, Victor JT (2014) Floating debris harvesting system. https://patents.google.com/patent/US9493215B2/en. Accessed 14 Dec 2021
    [40] Slat B et al. How the Ocean Can Clean Themselves: A Feasibility Study. 2014. https://www.researchgate.net/publication/309202751_Feasibility_Study_-_The_Ocean_Cleanup. Accessed 14 Dec 2021.
    [41] Doleshal DL. Pile cleaner apparatus. 2014. https://patents.google.com/patent/US8465228B2/en. Accessed 14 Dec 2021.
    [42] Basir I, Pratiwi TW, Saputra SN, and Windy W. The Ganers: garbage cleaning ship with triple hull system as a waste cleaning solution in Jakarta Bay. Indonesian Ministry of Research, Technology and Higher Education. 2013. https://www.neliti.com/publications/169998/the-ganers-kapal-pembersih-sampah-dengan-sistem-lambung-tiga-sebagai-solusi-pemb. Accessed 12 Dec 2021.
    [43] Herndon J, Matthew J. System and method for marine debris. 2014. https://patents.google.com/patent/US20140337297A1/en. Accessed 12 Dec 2021
    [44] Deng Sanmin. Cleaning boat for garbage on water surface. 2015. https://patents.google.com/patent/CN104986300A/en. Accessed 14 Dec 2021
    [45] Roberts, Richard W et al. The Ocean Saviour. 2019. https://www.bigblueoceancleanup.org/news/2018/10/7/ocean-saviour. Accessed 14 Dec 2021.
    [46] Patil R, Itnare R, Ahirrao S, Jadhav A, Dhumal A. Study of river harvesting & trash cleaning machine. International journal of innovative research in science & Engineering. 2016 2, 422-431. http://ijirse.com/wp-content/upload/2016/02/345N.pdf.
    [47] Bourgnon Y. The sea cleaners. 2016. https://www.theseacleaners.org/the-manta-innovation/. Accessed 14 Dec 2021
    [48] Kang HJ, Chun TB, Ahn H, Yim GT. Feasibility Study for onboard marine debris gathering and recycling. Marine Technology Society Journal. 2017, 51(1), 32–39. https://doi.org/10.4031/mtsj.51.1.4.
    [49] Sistemas, SENER Ingeniería. Boat for waste management and treatment. 2021. https://www.marine.sener/project/boat-for-waste-management-and-treatment. Accessed 27 Sept 2021.
    [50] Pratama AE, Kurniawati HA. Desain Aquatic Weed and trash skimmer boat Dengan Sistem Penggerak paddle wheel di sungai kalimas Surabaya. Jurnal Teknik ITS, 2019, 7(2). https://doi.org/10.12962/j23373539.v7i2.32187.
    [51] Luca NPD. Method and automated collection system for marine plastic debris. 2018. https://patents.google.com/patent/US20160185618A1/en. Accessed 14 Dec 2021.
    [52] Blinfold. Australia found a way to save water from plastic pollution and we can start doing the Same. 2019. https://www.healthyfoodhouse.com/australia-found-a-way-to-save-water-from-plastic-pollution-and-we-can-start-doing-the-same/?fbclid=IwAR1aMo_ghs2gH2kiSStwiUU-Tz7uO56ZMKuGAF0RiisyrP0QTip5ELbb53E. Accessed 14 Dec 2021
    [53] Slat B et al. The Interceptor. 2019. https://theoceancleanup.com/rivers/. Accessed 14 Dec 2021.
    [54] Menard S, Dag N. Ocean Phoenix 120, ocean coastal debris and jellyfish recovery ship. 2019. https://www.oceanphoenixproject.com/ocean-phoenix-120. Accessed 14 Dec 2021.
    [55] Christina, Briggette. River cleaning trash skimmer. 2020. https://www.bluebird-electric.net/oceanography/Ocean_Plastic_International_Rescue/River_Trash_Skimmers_Skips_Waterways_Cleaning_Work_Boats.htm. Accessed 14 Dec 2021
    [56] Sugianto E, Chen JH. Preliminary concept of ship use to waste management in sea shallow water. 33th Asian-Pacific Technical Exchange and Advisory Meetings on Marine Structures (TEAM 2020). 2019, Tainan, S-27.
    [57] Marina. Trash/debris skimmer vessels. 2019. http://alphaboats.com/wp-content/uploads/bsk-pdf-manager/MC-502_10.pdf. Accessed 11 Dec 2021
    [58] Fallati L, Polidori A, Salvatore C, Saponari L, Savini A, Galli P. Anthropogenic marine debris assessment with unmanned aerial vehicle imagery and Deep Learning: A case study along the beaches of the Republic of Maldives. Science of The Total Environment. 2019, 693, 133581. https://doi.org/10.1016/j.scitotenv.2019.133581.
    [59] Othman H, Iskandar PM, Chandratilak DSL, Caesarendra W. Automated trash collector design. Journal of Physics: Conference Series, 2020, 1444(1), 012040
    [60] Siying C. AZURE: marine sweeping robots. 2020. https://doi.org/10.1088/1742-6596/1444/1/012040.
    [61] Chandra H et al. Realita dan rekomendasi pengelolaan sampah di Kepulauan (Realities and recommendations for waste management in the islands). 2020. http://pusriskel.litbang.kkp.go.id/index.php/en/home/2456-telah-terbit-buku-pusriskel-qrealita-dan-rekomendasi-pengelolaan-sampah-di-kepulauanq. Accessed 14 Dec 2021.
    [62] Picardi G, Chellapurath M, Iacoponi S, Stefanni S, Laschi C, Calisti M. Bioinspired underwater legged robot for seabed exploration with low environmental disturbance. Science Robotics, 2020 5(42). https://doi.org/10.1126/scirobotics.aaz1012.
    [63] Hong L, Cui W, Chen H. A novel multi-robot task allocation model in marine plastics cleaning based on Replicator Dynamics. Journal of Marine Science and Engineering, 2021, 9(8), 879. https://doi.org/10.3390/jmse9080879.
    [64] Sugianto E, Winarno A, Indriyani R, Chen JH. Hull number effect in ship using conveyor on ocean Waste Collection. Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan, 2021, 18 (03) :128-139. https://doi.org/10.14710/kapal.v18i3.40744.
    [65] Sugianto E, Chen JH, Purba, NP. Numerical investigation of conveyor wing shape type effect on ocean waste collection behavior. E3S Web of Conferences, 2021 324, 01005. https://doi.org/10.1051/e3sconf/202132401005.
    [65] Sugianto E, Chen JH. Ships for waste management in Indonesian Seas: contexts and challenges. Indonesian Creativity, Ingenuity, and Innovation in a World in Transition, ed. FrankDhont. Tainan: Center of Multi-cultural Studies, National Cheng Kung University, 67–90. 2020.
    [66] Lin CK, Shaw HJ. Feature-based estimation of preliminary costs in shipbuilding. Ocean Engineering, 2017, 144, 305–319. https://doi.org/10.1016/j.oceaneng.2016.11.040.
    [67] Vriend P, Roebroek CTJ, van Emmerik T. Same but different: a framework to design and compare riverbank plastic monitoring strategies. Frontiers in Water, 2020, 2(October). https://doi.org/10.3389/frwa.2020.563791.
    [68] Cho DO. The incentive program for fishermen to collect marine debris in Korea. Marine Pollution Bulletin, 2009, 58(3), 415–417. https://doi.org/10.1016/j.marpolbul.2008.10.004.
    [69] Sugianto E, Chen JH. Buy marine debris: a digital platform for sustainable marine debris management involving fishermen. Nusantara: International Journal of Humanities and Social Sciences, 2021, 3(1):36-48. https://doi.org/10.6936/NIJHSS.202106_3(1).0003.
    [70] Adietya BA. Gustiarini ED. Studi perbandingan performa kapal trimaran, katamaran, dan monohull sebagai kapal penyeberangan di Kepulauan Karimunjawa (Comparative study of the performance of trimaran, catamaran, and monohull vessels as crossing vessels in the Karimun Jawa Islands). Kapal: Journal of Marine Science and Technology. 2018. 15(1), 18-23. https://doi.org/10.14710/kpl.v15i1.18487.
    [71] Zakki FZ, Chrismianto D, Widyandari A., Ilham R. 2021. On the development of catamaran hull form for fish processing vessel to support domestic fishing activities in Indonesia. Brodogradnja. 2021, 68 (3), 175-188. https://doi.org/10.17818/NM/2021/3.5.
    [72] Baron C. Standard Water Bottle Sizes and Guidelines. 2022. https://www.measuringknowhow.com/standard-water-bottle-sizes/#:~:text=The%20standard%20size%20of%20a,fluid%20ounces%20(1%20liter). Accessed 9 Jun 2022.
    [73] Dorner MFG Corp. Full specification dorner aquapruf aquagard, doner move fast and smart. 2009.
    https://www.bibus.hu/fileadmin/editors/countries/bihun/product_data/dorner/documents/dorner_series_aquagard_aquapruf_full_specifications_catalogue_en.pdf. Accessed 9 Jun 2022.
    [74] Versteeg, HK, Malalasekera W. An introduction to computational fluid dynamics -the finite volume method (2nd ed.). Pearson Education Limited, England, 2007.
    [75] ITTC. Practical Guidelines for Ship CFD Applications. In ITTC—Recommended Procedures and Guidelines; 26th ITTC Executive Committee: Rio de Janeiro, Brazil, 2011. Chapter 7.5-03-02-03.
    [76] Anderson, Computational Fluid Dynamics: The Basics with Applications. 1995.
    [77] US Navy. DTMB5415. 2021. http://www.simman2008.dk/5415/combatant.html. Accessed 9 Jun 2022.
    [78] Lazauskas, L. Resistance and squat of surface combatant DTMB model 5415: experiments and predictions. Semantic Scholar, 2009, 111345772. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.608.3188&rep=rep1&type=pdf.
    [79] ANSYS. ANSYS CFD-Solver Theory Guide. AnsysInc, Canonsburg, PA, USA. 2020. https://www.scirp.org/(S(lz5mqp453ed%20snp55rrgjct55))/reference/referencespapers.aspx?referenceid=3007463. Accessed 9 Jun 2022.
    [80] Ahmed YM. Numerical simulation for the free surface flow around a complex ship hull form at different Froude numbers. Alexandria Engineering Journal. 2011, 50 (3), 229-235. https://doi.org/10.1016/j.aej.2011.01.017.
    [81] ITTC. ITTC – Recommended Procedures Testing and Extrapolation Methods Resistance Test. In: International Towing Tank Conference. 2002. https://ittc.info/media/2019/75-02-02-01.pdf.
    [82] Firdhaus A, Suastika IK, Kiryanto K, Samuel S. Benchmark Study of FINETM/Marine CFD Code for the Calculation of Ship Resistance. Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan, 2021, vol. 18, no. 2, pp. 111-118. https://doi.org/10.14710/kapal.v18i2.39727.
    [83] United States Navy, Resistance and Powering of Ships. 2002. https://www.usna.edu/NAOE/_files/documents/Courses/EN400/02.07%20Chapter%207.pdf.

    無法下載圖示 校內:2027-12-02公開
    校外:2027-12-02公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE