| 研究生: |
張瀚文 Zhang, Han-Wen |
|---|---|
| 論文名稱: |
PARP1在複製壓力下的功能 The function of PARP1 under replication stress |
| 指導教授: |
廖泓鈞
Liaw, Hung-Jiun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | DNA修復 、DNA複製 、加成性致死 、PARP1 |
| 外文關鍵詞: | DNA damage and repair, DNA replication, Synthetic lethal, PARP1 |
| 相關次數: | 點閱:203 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
PARP1對於PRR機制 (Post-replication repair)中反向複製叉的形成有著重要的作用,反向複製叉可以在DNA損傷發生後停止並保護DNA複製叉,防止DNA損傷進一步擴大,但是目前PARP1是如何參與PRR機制並調控反向複製叉的生成還有待研究。在本篇研究中我們通過CRISPR技術產生了PARP1 knockout細胞株,我們發現與野生型細胞相比PARP1 knockout細胞株在面對HU (Hydroxyurea)所造成的複製壓力時,DNA的複製速率會有增加的趨勢,而在面對MMS (Methyl methane sulfonate)產生的複製壓力時,PARP1 knockout細胞株的複製速率又會低於野生型細胞。我們的研究成果顯示PARP1缺乏細胞複製速率的增減,取決於複製壓力的類型。另外PARP1的抑制或缺乏會導致homologous recombination defective cells (例如BRCA1/2突變細胞)產生加成性致死 (Synthetic lethal)。利用此機制目前臨床上開發出PARP1抑制劑Olaparib,用於治療BRCA1/2突變的癌症,但是抗藥性問題使得Olaparib的泛用性大大的降低,我們與成功大學化學系的邱顯泰教授合作,嘗試尋找可以治療BRCA2突變癌細胞的藥物,利用結腸癌細胞HCT116 及HCT116 BRCA2-/-測試從邱老師實驗室所合成的30種化合物。最後通過兩輪篩選我們發現2種化合物對於BRCA2-/-細胞似乎具有加成性致死的的效果,但都不比Olaparib有效。HCT116細胞株是良好的藥物篩選平台,可以篩選更多化合物期待能找到與Olaparib一樣甚至具有更好效果的藥物。
PARP1 plays an important role in the formation of reverse forks in response to replication stress. The formation of reversed forks protects stalling forks from collapse into DNA double-strand breaks and are vital to maintain genome stability. However, it remains unclear how PARP1 participates in the formation of reversed forks. Here, we generated the PARP1-knockout human cell lines by using CRISPR-mediated gene knockout strategy. We found that the depletion of PARP1 results in longer replication tracks in response to hydroxyurea (HU)-induced replication stress compared with wild type cells. By contrast, the depletion of PARP1 further reduces the length of replication tracks in response to methyl methane sulfonate (MMS)-induced replication stress. Our results indicate that the progression of replication tracks during replication stress depends on types of DNA lesions. Additionally, the inhibition of PARP1 shows synthetic lethal phenotypes in the homologous recombination (HR)-defective cells, such as BRCA1 or BRCA2 mutant cells. Therefore, the PARP1 inhibitors, such as Olaparib, has been developed to treat the BRCA1 or BRCA2 mutant cancers successfully. However, drug resistance occurs and has become an obstacle for the efficacy of the treatment. In order to develop new chemicals to treat HR-defective mutant cancers, we perform drug screening from chemical deposits kindly provided by Dr. Hsien-Tai Chiu, Dept of Chemistry, National Cheng Kung University. We used the BRCA2-deficient colorectal cell line HCT116 (BRCA2-/-) to screen for chemicals. In the end, we found two chemicals that show more sensitive in BRCA2-/- cells than the wild type cells. However, comparing with Olaparib, the two chemicals are not as effective as Olaparib. The BRCA2-/- cells are good platform to screen for chemicals. Further screening can be conducted to find chemicals that are as effective as Olaparib.
1. Beck, C., Robert, I., Reina-San-Martin, B., Schreiber, V., and Dantzer, F. (2014) Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. Exp Cell Res 329, 18-25
2. Hou, W. H., Chen, S. H., and Yu, X. (2019) Poly-ADP ribosylation in DNA damage response and cancer therapy. Mutat Res 780, 82-91
3. Hanzlikova, H., Gittens, W., Krejcikova, K., Zeng, Z., and Caldecott, K. W. (2017) Overlapping roles for PARP1 and PARP2 in the recruitment of endogenous XRCC1 and PNKP into oxidized chromatin. Nucleic Acids Res 45, 2546-2557
4. Berti, M., Ray Chaudhuri, A., Thangavel, S., Gomathinayagam, S., Kenig, S., Vujanovic, M., Odreman, F., Glatter, T., Graziano, S., Mendoza-Maldonado, R., Marino, F., Lucic, B., Biasin, V., Gstaiger, M., Aebersold, R., Sidorova, J. M., Monnat, R. J., Jr., Lopes, M., and Vindigni, A. (2013) Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol 20, 347-354
5. Ray Chaudhuri, A., Hashimoto, Y., Herrador, R., Neelsen, K. J., Fachinetti, D., Bermejo, R., Cocito, A., Costanzo, V., and Lopes, M. (2012) Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol 19, 417-423
6. Haince, J. F., McDonald, D., Rodrigue, A., Dery, U., Masson, J. Y., Hendzel, M. J., and Poirier, G. G. (2008) PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J Biol Chem 283, 1197-1208
7. Ray Chaudhuri, A., and Nussenzweig, A. (2017) The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol 18, 610-621
8. Lucchesi, J. C. (1968) Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanfgaster. Genetics 59, 37-44
9. Wright, S., and Dobzhansky, T. (1946) Genetics of natural populations; experimental reproduction of some of the changes caused by natural selection in certain populations of Drosophila pseudoobscura. Genetics 31, 125-156
10. Ganz, M., Vogel, C., Czada, C., Jorke, V., Gwosch, E. C., Kleiner, R., Pierzynska-Mach, A., Zanacchi, F. C., Diaspro, A., Kappes, F., Burkle, A., and Ferrando-May, E. (2019) The oncoprotein DEK affects the outcome of PARP1/2 inhibition during mild replication stress. PLoS One 14, e0213130
11. Shiu, J. L., Wu, C. K., Chang, S. B., Sun, Y. J., Chen, Y. J., Lai, C. C., Chiu, W. T., Chang, W. T., Myung, K., Su, W. P., and Liaw, H. (2020) The HLTF-PARP1 interaction in the progression and stability of damaged replication forks caused by methyl methanesulfonate. Oncogenesis 9, 104
12. Chatterjee, N., and Walker, G. C. (2017) Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 58, 235-263
13. Jackson, S. P., and Bartek, J. (2009) The DNA-damage response in human biology and disease. Nature 461, 1071-1078
14. Reuter, S., Gupta, S. C., Chaturvedi, M. M., and Aggarwal, B. B. (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49, 1603-1616
15. Abraham, R. T. (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15, 2177-2196
16. Blackford, A. N., and Jackson, S. P. (2017) ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Mol Cell 66, 801-817
17. Harper, J. W., and Elledge, S. J. (2007) The DNA damage response: ten years after. Mol Cell 28, 739-745
18. Modrich, P. (2016) Mechanisms in E. coli and Human Mismatch Repair (Nobel Lecture). Angew Chem Int Ed Engl 55, 8490-8501
19. Fishel, R. (2015) Mismatch repair. J Biol Chem 290, 26395-26403
20. Hao, P., LeBlanc, S. J., Case, B. C., Elston, T. C., Hingorani, M. M., Erie, D. A., and Weninger, K. R. (2020) Recurrent mismatch binding by MutS mobile clamps on DNA localizes repair complexes nearby. Proc Natl Acad Sci U S A 117, 17775-17784
21. Groothuizen, F. S., Winkler, I., Cristovao, M., Fish, A., Winterwerp, H. H., Reumer, A., Marx, A. D., Hermans, N., Nicholls, R. A., Murshudov, G. N., Lebbink, J. H., Friedhoff, P., and Sixma, T. K. (2015) MutS/MutL crystal structure reveals that the MutS sliding clamp loads MutL onto DNA. Elife 4, e06744
22. Mardenborough, Y. S. N., Nitsenko, K., Laffeber, C., Duboc, C., Sahin, E., Quessada-Vial, A., Winterwerp, H. H. K., Sixma, T. K., Kanaar, R., Friedhoff, P., Strick, T. R., and Lebbink, J. H. G. (2019) The unstructured linker arms of MutL enable GATC site incision beyond roadblocks during initiation of DNA mismatch repair. Nucleic Acids Res 47, 11667-11680
23. Goellner, E. M., Putnam, C. D., and Kolodner, R. D. (2015) Exonuclease 1-dependent and independent mismatch repair. DNA Repair (Amst) 32, 24-32
24. Liu, D., Keijzers, G., and Rasmussen, L. J. (2017) DNA mismatch repair and its many roles in eukaryotic cells. Mutat Res 773, 174-187
25. Lindahl, T. (1986) DNA glycosylases in DNA repair. Basic Life Sci 38, 335-340
26. Wallace, S. S. (2014) Base excision repair: a critical player in many games. DNA Repair (Amst) 19, 14-26
27. Jacobs, A. L., and Schar, P. (2012) DNA glycosylases: in DNA repair and beyond. Chromosoma 121, 1-20
28. Lee, T. H., and Kang, T. H. (2019) DNA Oxidation and Excision Repair Pathways. Int J Mol Sci 20
29. Levin, J. D., and Demple, B. (1990) Analysis of class II (hydrolytic) and class I (beta-lyase) apurinic/apyrimidinic endonucleases with a synthetic DNA substrate. Nucleic Acids Res 18, 5069-5075
30. Matsumoto, Y., Kim, K., Katz, D. S., and Feng, J. A. (1998) Catalytic center of DNA polymerase beta for excision of deoxyribose phosphate groups. Biochemistry 37, 6456-6464
31. Sugasawa, K. (2009) UV-DDB: a molecular machine linking DNA repair with ubiquitination. DNA Repair (Amst) 8, 969-972
32. Nakazawa, Y., Hara, Y., Oka, Y., Komine, O., van den Heuvel, D., Guo, C., Daigaku, Y., Isono, M., He, Y., Shimada, M., Kato, K., Jia, N., Hashimoto, S., Kotani, Y., Miyoshi, Y., Tanaka, M., Sobue, A., Mitsutake, N., Suganami, T., Masuda, A., Ohno, K., Nakada, S., Mashimo, T., Yamanaka, K., Luijsterburg, M. S., and Ogi, T. (2020) Ubiquitination of DNA Damage-Stalled RNAPII Promotes Transcription-Coupled Repair. Cell 180, 1228-1244 e1224
33. Wilson, M. D., Harreman, M., and Svejstrup, J. Q. (2013) Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Biochim Biophys Acta 1829, 151-157
34. Sigurdsson, S., Dirac-Svejstrup, A. B., and Svejstrup, J. Q. (2010) Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability. Mol Cell 38, 202-210
35. Compe, E., and Egly, J. M. (2012) TFIIH: when transcription met DNA repair. Nat Rev Mol Cell Biol 13, 343-354
36. Winkler, G. S., Araujo, S. J., Fiedler, U., Vermeulen, W., Coin, F., Egly, J. M., Hoeijmakers, J. H., Wood, R. D., Timmers, H. T., and Weeda, G. (2000) TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair. J Biol Chem 275, 4258-4266
37. Fan, L., Fuss, J. O., Cheng, Q. J., Arvai, A. S., Hammel, M., Roberts, V. A., Cooper, P. K., and Tainer, J. A. (2008) XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133, 789-800
38. Mota, M. B. S., Carvalho, M. A., Monteiro, A. N. A., and Mesquita, R. D. (2019) DNA damage response and repair in perspective: Aedes aegypti, Drosophila melanogaster and Homo sapiens. Parasit Vectors 12, 533
39. Kragelund, B. B., Weterings, E., Hartmann-Petersen, R., and Keijzers, G. (2016) The Ku70/80 ring in Non-Homologous End-Joining: easy to slip on, hard to remove. Front Biosci (Landmark Ed) 21, 514-527
40. Goodarzi, A. A., Yu, Y., Riballo, E., Douglas, P., Walker, S. A., Ye, R., Harer, C., Marchetti, C., Morrice, N., Jeggo, P. A., and Lees-Miller, S. P. (2006) DNA-PK autophosphorylation facilitates Artemis endonuclease activity. EMBO J 25, 3880-3889
41. Gu, J., Li, S., Zhang, X., Wang, L. C., Niewolik, D., Schwarz, K., Legerski, R. J., Zandi, E., and Lieber, M. R. (2010) DNA-PKcs regulates a single-stranded DNA endonuclease activity of Artemis. DNA Repair (Amst) 9, 429-437
42. Mao, Z., Bozzella, M., Seluanov, A., and Gorbunova, V. (2008) Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst) 7, 1765-1771
43. Altmann, T., and Gennery, A. R. (2016) DNA ligase IV syndrome; a review. Orphanet J Rare Dis 11, 137
44. Ira, G., Pellicioli, A., Balijja, A., Wang, X., Fiorani, S., Carotenuto, W., Liberi, G., Bressan, D., Wan, L., Hollingsworth, N. M., Haber, J. E., and Foiani, M. (2004) DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431, 1011-1017
45. Mimitou, E. P., and Symington, L. S. (2011) DNA end resection--unraveling the tail. DNA Repair (Amst) 10, 344-348
46. Myler, L. R., Gallardo, I. F., Soniat, M. M., Deshpande, R. A., Gonzalez, X. B., Kim, Y., Paull, T. T., and Finkelstein, I. J. (2017) Single-Molecule Imaging Reveals How Mre11-Rad50-Nbs1 Initiates DNA Break Repair. Mol Cell 67, 891-898 e894
47. Gupta, R. C., Golub, E. I., Wold, M. S., and Radding, C. M. (1998) Polarity of DNA strand exchange promoted by recombination proteins of the RecA family. Proc Natl Acad Sci U S A 95, 9843-9848
48. Wright, W. D., Shah, S. S., and Heyer, W. D. (2018) Homologous recombination and the repair of DNA double-strand breaks. J Biol Chem 293, 10524-10535
49. Isono, M., Niimi, A., Oike, T., Hagiwara, Y., Sato, H., Sekine, R., Yoshida, Y., Isobe, S. Y., Obuse, C., Nishi, R., Petricci, E., Nakada, S., Nakano, T., and Shibata, A. (2017) BRCA1 Directs the Repair Pathway to Homologous Recombination by Promoting 53BP1 Dephosphorylation. Cell Rep 18, 520-532
50. Rothkamm, K., Kruger, I., Thompson, L. H., and Lobrich, M. (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23, 5706-5715
51. Ulrich, H. D. (2005) The RAD6 pathway: control of DNA damage bypass and mutagenesis by ubiquitin and SUMO. Chembiochem 6, 1735-1743
52. Gao, Y., Mutter-Rottmayer, E., Zlatanou, A., Vaziri, C., and Yang, Y. (2017) Mechanisms of Post-Replication DNA Repair. Genes (Basel) 8
53. Lehmann, A. R., Niimi, A., Ogi, T., Brown, S., Sabbioneda, S., Wing, J. F., Kannouche, P. L., and Green, C. M. (2007) Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair (Amst) 6, 891-899
54. Yang, W. (2014) An overview of Y-Family DNA polymerases and a case study of human DNA polymerase eta. Biochemistry 53, 2793-2803
55. Sun, L., and Chen, Z. J. (2004) The novel functions of ubiquitination in signaling. Curr Opin Cell Biol 16, 119-126
56. Slade, D. (2018) Maneuvers on PCNA Rings during DNA Replication and Repair. Genes (Basel) 9
57. Giannattasio, M., Zwicky, K., Follonier, C., Foiani, M., Lopes, M., and Branzei, D. (2014) Visualization of recombination-mediated damage bypass by template switching. Nat Struct Mol Biol 21, 884-892
58. Nishizuka, Y., Ueda, K., Nakazawa, K., and Hayaishi, O. (1967) Studies on the polymer of adenosine diphosphate ribose. I. Enzymic formation from nicotinamide adenine dinuclotide in mammalian nuclei. J Biol Chem 242, 3164-3171
59. Kurosaki, T., Ushiro, H., Mitsuuchi, Y., Suzuki, S., Matsuda, M., Matsuda, Y., Katunuma, N., Kangawa, K., Matsuo, H., Hirose, T., and et al. (1987) Primary structure of human poly(ADP-ribose) synthetase as deduced from cDNA sequence. J Biol Chem 262, 15990-15997
60. Ame, J. C., Spenlehauer, C., and de Murcia, G. (2004) The PARP superfamily. Bioessays 26, 882-893
61. D'Amours, D., Desnoyers, S., D'Silva, I., and Poirier, G. G. (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342 ( Pt 2), 249-268
62. Langelier, M. F., Planck, J. L., Roy, S., and Pascal, J. M. (2011) Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: structural and functional insights into DNA-dependent PARP-1 activity. J Biol Chem 286, 10690-10701
63. Gradwohl, G., Menissier de Murcia, J. M., Molinete, M., Simonin, F., Koken, M., Hoeijmakers, J. H., and de Murcia, G. (1990) The second zinc-finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA. Proc Natl Acad Sci U S A 87, 2990-2994
64. Langelier, M. F., Planck, J. L., Roy, S., and Pascal, J. M. (2012) Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science 336, 728-732
65. Langelier, M. F., Ruhl, D. D., Planck, J. L., Kraus, W. L., and Pascal, J. M. (2010) The Zn3 domain of human poly(ADP-ribose) polymerase-1 (PARP-1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction. J Biol Chem 285, 18877-18887
66. Loeffler, P. A., Cuneo, M. J., Mueller, G. A., DeRose, E. F., Gabel, S. A., and London, R. E. (2011) Structural studies of the PARP-1 BRCT domain. BMC Struct Biol 11, 37
67. Maliuchenko, N. V., Kulaeva, O. I., Kotova, E., Chupyrkina, A. A., Nikitin, D. V., Kirpichnikov, M. P., and Studitskii, V. M. (2015) [Molecular mechanisms of regulaion of transcription by PARP1]. Mol Biol (Mosk) 49, 99-113
68. Ha, H. C., and Snyder, S. H. (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A 96, 13978-13982
69. Caldecott, K. W., McKeown, C. K., Tucker, J. D., Ljungquist, S., and Thompson, L. H. (1994) An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol Cell Biol 14, 68-76
70. Whitehouse, C. J., Taylor, R. M., Thistlethwaite, A., Zhang, H., Karimi-Busheri, F., Lasko, D. D., Weinfeld, M., and Caldecott, K. W. (2001) XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell 104, 107-117
71. Pines, A., Vrouwe, M. G., Marteijn, J. A., Typas, D., Luijsterburg, M. S., Cansoy, M., Hensbergen, P., Deelder, A., de Groot, A., Matsumoto, S., Sugasawa, K., Thoma, N., Vermeulen, W., Vrieling, H., and Mullenders, L. (2012) PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J Cell Biol 199, 235-249
72. King, B. S., Cooper, K. L., Liu, K. J., and Hudson, L. G. (2012) Poly(ADP-ribose) contributes to an association between poly(ADP-ribose) polymerase-1 and xeroderma pigmentosum complementation group A in nucleotide excision repair. J Biol Chem 287, 39824-39833
73. Haince, J. F., Kozlov, S., Dawson, V. L., Dawson, T. M., Hendzel, M. J., Lavin, M. F., and Poirier, G. G. (2007) Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents. J Biol Chem 282, 16441-16453
74. Li, M., and Yu, X. (2013) Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell 23, 693-704
75. Schwertman, P., Bekker-Jensen, S., and Mailand, N. (2016) Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat Rev Mol Cell Biol 17, 379-394
76. Ruscetti, T., Lehnert, B. E., Halbrook, J., Le Trong, H., Hoekstra, M. F., Chen, D. J., and Peterson, S. R. (1998) Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J Biol Chem 273, 14461-14467
77. Luijsterburg, M. S., de Krijger, I., Wiegant, W. W., Shah, R. G., Smeenk, G., de Groot, A. J. L., Pines, A., Vertegaal, A. C. O., Jacobs, J. J. L., Shah, G. M., and van Attikum, H. (2016) PARP1 Links CHD2-Mediated Chromatin Expansion and H3.3 Deposition to DNA Repair by Non-homologous End-Joining. Mol Cell 61, 547-562
78. Bryant, H. E., Petermann, E., Schultz, N., Jemth, A. S., Loseva, O., Issaeva, N., Johansson, F., Fernandez, S., McGlynn, P., and Helleday, T. (2009) PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J 28, 2601-2615
79. Ying, S., Hamdy, F. C., and Helleday, T. (2012) Mre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1. Cancer Res 72, 2814-2821
80. Nieminuszczy, J., Schwab, R. A., and Niedzwiedz, W. (2016) The DNA fibre technique - tracking helicases at work. Methods 108, 92-98
81. O'Neil, N. J., Bailey, M. L., and Hieter, P. (2017) Synthetic lethality and cancer. Nat Rev Genet 18, 613-623
82. AlHilli, M. M., Becker, M. A., Weroha, S. J., Flatten, K. S., Hurley, R. M., Harrell, M. I., Oberg, A. L., Maurer, M. J., Hawthorne, K. M., Hou, X., Harrington, S. C., McKinstry, S., Meng, X. W., Wilcoxen, K. M., Kalli, K. R., Swisher, E. M., Kaufmann, S. H., and Haluska, P. (2016) In vivo anti-tumor activity of the PARP inhibitor niraparib in homologous recombination deficient and proficient ovarian carcinoma. Gynecol Oncol 143, 379-388
83. Audeh, M. W., Carmichael, J., Penson, R. T., Friedlander, M., Powell, B., Bell-McGuinn, K. M., Scott, C., Weitzel, J. N., Oaknin, A., Loman, N., Lu, K., Schmutzler, R. K., Matulonis, U., Wickens, M., and Tutt, A. (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376, 245-251
84. Sandhu, S. K., Schelman, W. R., Wilding, G., Moreno, V., Baird, R. D., Miranda, S., Hylands, L., Riisnaes, R., Forster, M., Omlin, A., Kreischer, N., Thway, K., Gevensleben, H., Sun, L., Loughney, J., Chatterjee, M., Toniatti, C., Carpenter, C. L., Iannone, R., Kaye, S. B., de Bono, J. S., and Wenham, R. M. (2013) The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol 14, 882-892
85. Jiang, X., Li, X., Li, W., Bai, H., and Zhang, Z. (2019) PARP inhibitors in ovarian cancer: Sensitivity prediction and resistance mechanisms. J Cell Mol Med 23, 2303-2313
86. Lombard, A. P., Liu, C., Armstrong, C. M., D'Abronzo, L. S., Lou, W., Chen, H., Dall'Era, M., Ghosh, P. M., Evans, C. P., and Gao, A. C. (2019) Overexpressed ABCB1 Induces Olaparib-Taxane Cross-Resistance in Advanced Prostate Cancer. Transl Oncol 12, 871-878
87. Iyer, D. R., and Rhind, N. (2017) The Intra-S Checkpoint Responses to DNA Damage. Genes (Basel) 8
校內:2026-09-01公開