| 研究生: |
陳采翎 Chen, Tsai-Ling |
|---|---|
| 論文名稱: |
探討共享電動滑板車之選擇行為意圖 Exploring Potential Users’ Choice Behavior Intention of Shared Electric Scooter |
| 指導教授: |
鄭永祥
Cheng, Yung-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 共享電動滑板車 、共享微型運具 、潛在使用者 、整合選擇及潛在變數模式(ICLV Model) |
| 外文關鍵詞: | Shared electric scooters, Shared micromobility, Potential users, Integrated Choice and Latent Variable Model |
| 相關次數: | 點閱:164 下載:55 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
交通所造成的道路壅塞、空氣污染、及噪音污染等問題正遍佈於全球各城市,而微型運具與共享微型運具的概念,成為近幾年大規模進入許多城市且受到許多關注的新型態運輸模式,其中電動滑板車具方便性、娛樂性及靈活性等特點,近年已成為美國最受歡迎的共享微型運具。隨著台灣對於電動滑板車相關法規的修正,在政府及業者欲進入市場前,除了找出潛在使用者,亦須考量潛在使用者所考量之客觀與心理主觀因素。
本研究運用整合選擇及潛在變數模式(ICLV Model)了解受訪者對於共享電動滑板車之不同方案屬性變數的偏好程度,以及探討受訪者之社會經濟特徵與潛在心理因素的關係及影響程度,當中包含社會經濟特徵對於「享樂性動機」、「有利於環境之態度」、「科技創新」及「安全意識」四個潛在心理變數的影響。接著透過結合個體選擇模式,分析不同共享微型運具使用習慣的受訪者在衡量其選擇行為時,加入潛在心理變數與否對於選擇行為的影響及其程度。
研究結果顯示,啟用費用、每分鐘費用、騎乘車道及天氣皆會造成顯著影響;男性相較於女性,較有可能是市場中的新產品或新服務的早期採用者,31歲以上的受訪者相較於18-30歲的受訪者,對於使用共享電動滑板車的安全問題較為關心;在潛在心理變數中,使用共享微型運具習慣較弱的受訪者最在意享樂性動機與安全意識,而對使用共享微型運具習慣較強的受訪者來說,四項潛在心理變數皆會造成顯著性的影響。透過本研究之結果,可作為未來業者與政府相關單位欲推動該運具時之參考依據。
The problems of congestion, air pollution, and noise are throughout the world, while the shared micromobility has become a new transportation mode which has entered cities on a large scale with much attention recently. With the amendment of Acts related to electric scooter (e-scooter) in Taiwan, the service providers should not only identify potential users, but consider the explanatory variables and unobserved psychological factors that potential users care about before entering the market.
By applying the integrated choice and latent variable (ICLV) model, we capture the respondents' preferences towards different attribute variables of shared e-scooters and learn the relationship between socio-demographic characteristics and potential psychological factors Then, we analyze the degree of influence on potential psychological factors with different sharing micro-mobility habits.
Results show that the attributes variables, start cost, cost per minute, riding lane, and weather have significant effects. Males are more likely to be early adopters of new products or services in the market than females; and respondents over the age of 31 are more concerned to the safety of e-scooter use than those aged 18-30. Among the potential psychological factors, respondents with a weak habit of using shared micro-mobility are most concerned with ‘hedonic motivation’ and ‘safety consciousness’, while for those with a strong one, all factors have significant impacts. This study is expected to be a reference when the service providers and the government plan to promote shared e-scooter in Taiwan.
Abate, T. G., Börger, T., Aanesen, M., Falk-Andersson, J., Wyles, K. J., & Beaumont, N. (2020). Valuation of marine plastic pollution in the European Arctic: Applying an integrated choice and latent variable model to contingent valuation. Ecological Economics, 169, 106521.
Abouelela, M., Al Haddad, C., & Antoniou, C. (2021). Are young users willing to shift from carsharing to scooter–sharing?. Transportation Research Part D: Transport and Environment, 95, 102821.
Adnan, M., Altaf, S., Bellemans, T., & Shakshuki, E. M. (2019). Last-mile travel and bicycle sharing system in small/medium sized cities: user’s preferences investigation using hybrid choice model. Journal of Ambient Intelligence and Humanized Computing, 10(12), 4721-4731.
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological bulletin, 103(3), 411.
Badeau, A., Carman, C., Newman, M., Steenblik, J., Carlson, M., & Madsen, T. (2019). Emergency department visits for electric scooter-related injuries after introduction of an urban rental program. The American journal of emergency medicine, 37(8), 1531-1533.
Baek, K., Lee, H., Chung, J. H., & Kim, J. (2021). Electric scooter sharing: How do people value it as a last-mile transportation mode?. Transportation Research Part D: Transport and Environment, 90, 102642.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16(1), 74-94.
Bai, S., & Jiao, J. (2020). Dockless E-scooter usage patterns and urban built Environments: A comparison study of Austin, TX, and Minneapolis, MN. Travel behaviour and society, 20, 264-272.
Barnes, S. J., & Mattsson, J. (2016). Understanding current and future issues in collaborative consumption: A four-stage Delphi study. Technological Forecasting and Social Change, 104, 200-211.
BCG (Boston Consulting Group). (2019). Available: https://www.bcg.com/fr-fr/publications/2019/promise-pitfalls-e-scooter-sharing.aspx Accessed 28 August 2019.
Ben-Akiva, M., McFadden, D., Gärling, T., Gopinath, D., Walker, J., Bolduc, D., ... & Rao, V. (1999). Extended framework for modeling choice behavior. Marketing letters, 10(3), 187-203.
Ben-Akiva, M., Walker, J., Bernardino, A. T., Gopinath, D. A., Morikawa, T., & Polydoropoulou, A. (2002). Integration of choice and latent variable models. Perpetual motion: Travel behaviour research opportunities and application challenges, 431-470.
Ben-Akiva, M., & Lerman, S. R. (2018). Discrete choice analysis: theory and application to travel demand. Transportation Studies.
Bezerra, B. S., dos Santos, A. L. L., & Delmonico, D. V. (2020). Unfolding barriers for urban mobility plan in small and medium municipalities–A case study in Brazil. Transportation Research Part A: Policy and Practice, 132, 808-822.
Brunner, H., Hirz, M., Hirschberg, W., & Fallast, K. (2018). Evaluation of various means of transport for urban areas. Energy, Sustainability and Society, 8(1), 1-11.
Cao, Z., Zhang, X., Chua, K., Yu, H., & Zhao, J. (2021). E-scooter sharing to serve short-distance transit trips: A Singapore case. Transportation research part A: policy and practice, 147, 177-196.
Caspi, O., Smart, M. J., & Noland, R. B. (2020). Spatial associations of dockless shared e-scooter usage. Transportation Research Part D: Transport and Environment, 86, 102396.
Chen, C. F., Chen, Y. X., Mu, P. J., & Yu, Y. H. (2020). Beyond adoption of shared bike: A case study on antecedents and consequences of brand attachment in Taiwan. Research in Transportation Business & Management, 100574.
Clewlow, R. R. (2019). The micro-mobility revolution: the introduction and adoption of electric scooters in the United States (No. 19-03991).
Christoforou, Z., Gioldasis, C., de Bortoli, A., & Seidowsky, R. (2021). Who is using e-scooters and how? Evidence from Paris. Transportation research part D: transport and environment, 92, 102708.
Claudy, M. C., Garcia, R., & O’Driscoll, A. (2015). Consumer resistance to innovation—a behavioral reasoning perspective. Journal of the Academy of Marketing Science, 43(4), 528-544.
Clewlow, R. R. (2019). The micro-mobility revolution: the introduction and adoption of electric scooters in the United States (No. 19-03991).
Coates, M. (2016). The Evolution of Car Sharing. Clean Fleet Report. Available at: http://www.cleanfleetreport.com/best-car-sharing/ (Accessed: 19 November 2018). de Bortoli, A., Christoforou, Z., 2020. Consequential LCA for territorial and multimodal transportation policies: method and application to the free-floating e-scooter disruption in Paris. J. Cleaner Prod. 273, 122898.
Danner, U. N., Aarts, H., & De Vries, N. K. (2008). Habit vs. intention in the prediction of future behaviour: The role of frequency, context stability and mental accessibility of past behaviour. British Journal of Social Psychology, 47(2), 245-265.
Degele, J., Gorr, A., Haas, K., Kormann, D., Krauss, S., Lipinski, P., ... & Hertweck, D. (2018). Identifying E-scooter sharing customer segments using clustering. In 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC) (pp. 1-8). IEEE.
Dissanayake, D., & Morikawa, T. (2010). Investigating household vehicle ownership, mode choice and trip sharing decisions using a combined revealed preference/stated preference Nested Logit model: case study in Bangkok Metropolitan Region. Journal of Transport Geography, 18(3), 402-410.
Donais, F. M., Abi-Zeid, I., Waygood, E. O. D., & Lavoie, R. (2022). Municipal decision-making for sustainable transportation: Towards improving current practices for street rejuvenation in Canada. Transportation Research Part A: Policy and Practice, 156, 152-170.
Eccarius, T., & Lu, C. C. (2020). Adoption intentions for micro-mobility–Insights from electric scooter sharing in Taiwan. Transportation research part D: transport and environment, 84, 102327.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
Fowkes, T., & Wardman, M. (1988). The design of stated preference travel choice experiments: with special reference to interpersonal taste variations. Journal of transport economics and policy, 27-44.
Fraj, E., & Martinez, E. (2006). Environmental values and lifestyles as determining factors of ecological consumer behaviour: an empirical analysis. Journal of consumer marketing.
Gössling, S. (2020). Integrating e-scooters in urban transportation: Problems, policies, and the prospect of system change. Transportation Research Part D: Transport and Environment, 79, 102230.
Guo, Y., & Zhang, Y. (2021). Understanding factors influencing shared e-scooter usage and its impact on auto mode substitution. Transportation Research Part D: Transport and Environment, 99, 102991.
Haboucha, C. J., Ishaq, R., & Shiftan, Y. (2017). User preferences regarding autonomous vehicles. Transportation Research Part C: Emerging Technologies, 78, 37-49.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis: Pearson new international edition. Essex: Pearson Education Limited, 1(2).
Hall, M. (2017). “Bird Scooters Flying around Town.” Santa Monica Daily Press, 26 September. Available at: https://www.smdp.com/bird-scooters-flying-around- town/162647 (Accessed: 19 September 2020).
Hamari, J., Sjöklint, M., & Ukkonen, A. (2016). The sharing economy: Why people participate in collaborative consumption. Journal of the association for information science and technology, 67(9), 2047-2059.
Haworth, N., Schramm, A., & Twisk, D. (2021). Comparing the risky behaviours of shared and private e-scooter and bicycle riders in downtown Brisbane, Australia. Accident Analysis & Prevention, 152, 105981.
Hensher, D. A., Barnard, P. O., & Truong, T. P. (1988). The role of stated preference methods in studies of travel choice. Journal of transport economics and policy, 45-58.
Hosseinzadeh, A., Karimpour, A., & Kluger, R. (2021). Factors influencing shared micromobility services: An analysis of e-scooters and bikeshare. Transportation Research Part D: Transport and Environment, 100, 103047.
Kamargianni, M., Dubey, S., Polydoropoulou, A., & Bhat, C. (2015). Investigating the subjective and objective factors influencing teenagers’ school travel mode choice–An integrated choice and latent variable model. Transportation Research Part A: Policy and Practice, 78, 473-488.
Isaksson, K., Antonson, H., & Eriksson, L. (2017). Layering and parallel policy making–Complementary concepts for understanding implementation challenges related to sustainable mobility. Transport policy, 53, 50-57.
Kim, J., Rasouli, S., & Timmermans, H. (2014). Expanding scope of hybrid choice models allowing for mixture of social influences and latent attitudes: Application to intended purchase of electric cars. Transportation research part A: policy and practice, 69, 71-85.
Kim, J., Rasouli, S., & Timmermans, H. (2017). Satisfaction and uncertainty in car-sharing decisions: An integration of hybrid choice and random regret-based models. Transportation Research Part A: Policy and Practice, 95, 13-33.
Kim, J., Rasouli, S., & Timmermans, H. J. (2017). The effects of activity-travel context and individual attitudes on car-sharing decisions under travel time uncertainty: A hybrid choice modeling approach. Transportation Research Part D: Transport and Environment, 56, 189-202.
Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford publications.
Kopplin, C. S., Brand, B. M., & Reichenberger, Y. (2021). Consumer acceptance of shared e-scooters for urban and short-distance mobility. Transportation research part D: transport and environment, 91, 102680.
Kroes, E. P., & Sheldon, R. J. (1988). Stated preference methods: an introduction. Journal of transport economics and policy, 11-25.
Lee, M., Chow, J. Y., Yoon, G., & He, B. Y. (2021). Forecasting e-scooter substitution of direct and access trips by mode and distance. Transportation Research Part D: Transport and Environment, 96, 102892.
Li, W., & Kamargianni, M. (2020). An integrated choice and latent variable model to explore the influence of attitudinal and perceptual factors on shared mobility choices and their value of time estimation. Transportation science, 54(1), 62-83.
Madigan, R., Louw, T., Wilbrink, M., Schieben, A., & Merat, N. (2017). What influences the decision to use automated public transport? Using UTAUT to understand public acceptance of automated road transport systems. Transportation research part F: traffic psychology and behaviour, 50, 55-64.
Mani, Z., & Chouk, I. (2017). Drivers of consumers’ resistance to smart products. Journal of Marketing Management, 33(1-2), 76-97.
Mani, Z., & Chouk, I. (2018). Consumer resistance to innovation in services: challenges and barriers in the internet of things era. Journal of Product Innovation Management, 35(5), 780-807.
Mao, B., Ao, C., Cheng, Y., Jiang, N., & Xu, L. (2020). Exploring the role of public risk perceptions on preferences for air quality improvement policies: An integrated choice and latent variable approach. Journal of Cleaner Production, 269, 122379.
Mark, T. L., & Swait, J. (2004). Using stated preference and revealed preference modeling to evaluate prescribing decisions. Health economics, 13(6), 563-573.
Mayhew, L. J., & Bergin, C. (2019). Impact of e‐scooter injuries on emergency department imaging. Journal of medical imaging and radiation oncology, 63(4), 461-466.
McFadden, D. (1997). Rationality for Economists. Presented at the NSF Symposium on Eliciting Preferences. Berkeley, California, July.
McKenzie, G. (2019). Spatiotemporal comparative analysis of scooter-share and bike-share usage patterns in Washington, DC. Journal of transport geography, 78, 19-28.
NACTO (2019). 84 Million Trips in 2018 [Online]. Availble: https://nacto.org/wp-content/uploads/2019/04/NACTO_Shared-Micromobility-in-2018_Web.pdf [Accessed 3/28/2020].
Nikiforiadis, A., Paschalidis, E., Stamatiadis, N., Raptopoulou, A., Kostareli, A., & Basbas, S. (2021). Analysis of attitudes and engagement of shared e-scooter users. Transportation research part D: transport and environment, 94, 102790.
Osswald, S., Wurhofer, D., Trösterer, S., Beck, E., & Tscheligi, M. (2012). Predicting information technology usage in the car: towards a car technology acceptance model. In Proceedings of the 4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 51-58).
Porter, M. E., & Heppelmann, J. E. (2015). How smart, connected products are transforming companies. Harvard business review, 93(10), 96-114.
Raveau, S., Álvarez-Daziano, R., Yáñez, M. F., Bolduc, D., & de Dios Ortúzar, J. (2010). Sequential and simultaneous estimation of hybrid discrete choice models: Some new findings. Transportation Research Record, 2156(1), 131-139.
Reigner, H., & Brenac, T. (2019). Safe, sustainable… but depoliticized and uneven–A critical view of urban transport policies in France. Transportation research part A: policy and practice, 121, 218-234.
Rogers, E. M. (2010). Diffusion of innovations. Simon and Schuster.
Sanders, R. L., Branion-Calles, M., & Nelson, T. A. (2020). To scoot or not to scoot: Findings from a recent survey about the benefits and barriers of using E-scooters for riders and non-riders. Transportation Research Part A: Policy and Practice, 139, 217-227.
Shaheen, S., & Chan, N. (2016). Mobility and the sharing economy: Potential to facilitate the first-and last-mile public transit connections. Built Environment, 42(4), 573-588.
Shaheen, S., & Cohen, A. (2019). Shared micromoblity policy toolkit: Docked and dockless bike and scooter sharing.
Sikka, N., Vila, C., Stratton, M., Ghassemi, M., & Pourmand, A. (2019). Sharing the sidewalk: A case of E-scooter related pedestrian injury. The American journal of emergency medicine, 37(9), 1807-e5.
Thapa, D., Gabrhel, V., & Mishra, S. (2021). What are the factors determining user intentions to use AV while impaired?. Transportation research part F: traffic psychology and behaviour, 82, 238-255.
Torkzadeh, G., Koufteros, X., & Pflughoeft, K. (2003). Confirmatory analysis of computer self-efficacy. Structural Equation Modeling, 10(2), 263-275.
Vij, A., & Walker, J. L. (2016). How, when and why integrated choice and latent variable models are latently useful. Transportation Research Part B: Methodological, 90, 192-217.
Westaby, J. D. (2005). Behavioral reasoning theory: Identifying new linkages underlying intentions and behavior. Organizational behavior and human decision processes, 98(2), 97-120.
Yu, S., & Tsai, W. D. (2021). The effects of road safety education on the occurrence of motorcycle violations and accidents for novice riders: an analysis of population-based data. Accident Analysis & Prevention, 163, 106457.
Youbike (2020). 2020/05 monthly rentals at Taipei City. Accessed July 6, 2020 http://taipei.youbike.com.tw/