簡易檢索 / 詳目顯示

研究生: 王鈴雅
Wang, Ling-Ya
論文名稱: 肺泡表面蛋白D對於CpG寡核甘酸引起免疫反應的影響
The Effect of Pulmonary Surfactant Protein D (SP-D) on CpG ODN-induced Immune Response in Alveolar Macrophage
指導教授: 王志堯
Wang, Jiu-Yao
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 63
中文關鍵詞: 肺泡表面蛋白
外文關鍵詞: alveolar macrophage, CpG ODN, surfactant protein D
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺臟是我們體內氣體交換的器官,所以肺臟經常接觸空氣中的病原菌、過敏原和汙染物質。肺臟的防禦系統必須有效快速清除這些病原菌。肺泡的先天免疫防禦機制中含有嗜中性血球、巨噬細胞、補體、肺泡表面組成物質。位在嗜中性血球和巨噬細胞..等抗原呈現細胞上的Toll-likes receptors能辨識許多不同病原菌的PAMPs。例如,Toll-like receptor 9可以辨識散佈在細菌DNA中的未甲基化CpG寡核甘酸並且導致抗原呈現細胞產生發炎性細胞素,如:TNFα。許多文獻報導肺泡表面蛋白有調節先天免疫的功能,例如增加吞噬細胞清除病原菌。並且肺泡表面蛋白D的C端醣類辨識區域被報導能和許多PAMPs結合,例如 LPS, lipoteichoic acid, peptidoglycan, plasmic DNA 和人工合成寡核甘酸。但是肺泡表面蛋白D和CpG寡核甘酸的作用關係及其免疫反應仍不清楚。我的研究目的是在探討肺泡表面蛋白D在CpG寡核甘酸引起的發炎反應中所扮演的腳色。
    研究結果顯示,CpG寡核甘酸在MHS細胞中會活化P38 MAPK及JNK磷酸化,並促使MHS細胞產生TNFα。然而,CpG寡核甘酸不影響其接受器TLR9的表現量。當分別以三種MAPK抑制劑進行處理時,發現P38磷酸化抑制(SB203580)和JNK磷酸化抑制劑(SP600125)會抑制CpG寡核甘酸誘發TNFα生成。顯示CpG寡核甘酸所誘導的P38和JNK參與TNFα生成反應。此外,也發現P38和JNK的上游共同訊號IRAK-1會受到CpG寡核甘酸而活化並被降解。研究結果也顯示,自然的肺泡表面蛋白D能些微促進CpG寡核甘酸誘發的TNFα生成量,但是僅具有C端糖類辨識區域的重組肺泡表面蛋白D能明顯抑制TNFα生成量。當以不同濃度的重組肺泡表面蛋白D前處理,再給予CpG寡核甘酸刺激時,P38磷酸化與JNK磷酸化接受到重組肺泡表面蛋白D的抑制。這結果導致CpG寡核甘酸誘發的TNFα生成量受到重組肺泡表面蛋白D的抑制。此外,CpG寡核甘酸所引起的IRAK-1降解也受到重組肺泡表面蛋白D的抑制;而自然的肺泡表面蛋白D不能抑制IRAK-1降解。這些結果證實recombinant SP-D 能抑制CpG寡核甘酸引起TNFα生成,可能是經由抑制IRAK-1和JNK、P38 MAPKs的活性。

    As an gas-exchange organ, lungs are inevitably exposed to air that is contaminated with pathogens, allergens and pollutants. Host-defence mechanisms within the lungs must facilitate clearance of inhaled pathogens. The innate immune components in the lung alveolar include neutrophils, alveolar macrophages, opsonins, complements and surfactant components. Toll-like receptors (TLRs) on these antigen presenting cells (eg. macrophages and neutrophils) recognize different pathogen-associate molecular patterns (PAMPs) of inhaled pathogens. For example, unmethylated CpG dinucleotides (CpG ODN) distributed in bacterial DNA are recognized by TLR9, which leads to inflammatory cytokines (eg. TNFα) production by antigen presenting cells. Many literatures reported that surfactant proteins (SPs) regulate lung innate immunity, such as enhancing pathogen clearance by phagocytes through binding to a variety of bacteria, viruses and allergens. The carbohydrate recognition domain of SP-D was reported to bind many PAMPs, such as LPS, lipoteichoic acid, peptidoglycan, plasmic DNA and synthetic oligonucleotides. But the relationship between SP-D and CpG ODN and the immune response has not been defined. The objective of my study is to determine the role of SP-D in the modulation of TNFα production by alveolar macrophages activated by CpG ODN. Results showed that CpG ODN activated the phosphorylation of P38 and JNK MAP kinases and TNFα production in MHS cells. However, CpG ODN did not affect TLR9 expression. While MHS cells pretreated with three kinds of MAPK inhibitors, the CpG ODN-induced TNFα production was inhibited by P38 inhibitor (SB203580) and JNK inhibitor (SP600125). Which showed that P38 and JNK participated in TNFα production. Besides, IRAK-1, a joint molecular of upstream of P38 and JNK signaling, was activated and degraded by CpG ODN stimulation. Data also showed that native SP-D slightly up-regulated TNFα production under the stimulation of CpG ODN. But the recombinant SP-D composed of αhelical neck region and carbohydrate recognition domains inhibited CpG ODN-induced TNFα production significantly. While MHS cells pretreated with different dose of recombinant SP-D and then challenged with CpG ODN, the phosphorylation of P38 and JNK are inhibited by recombinant SP-D. Which led to recombinant SP-D inhibited TNFα production. In addition, IRAK-1 was protected from CpG ODN-induced degradation by recombinant SPD not native SP-D. These results demonstrated that recombinant SP-D inhibited CpG ODN-induced TNFα production via inhibition on the activity of IRAK-1, JNK and P38 MAPKs.

    Table of Contents Chinese abstract………………………………………………………4 English Abstract………………………………………………………5 Table of Contents…………………………………………………….7 List of figures…………………………………………………………9 List of appendixes……………………………………………………10 List of abbreviations…………………………………………………11 Introduction 1.1Lung host-defense mechanisms and the function of SP-A and SP-D………...12 1.2 Protein structure and functional domains of SP-D……………………………12 1.3 Characteristics of the sequence of CpG ODN………………………………....13 1.4 Pathogenesis of CpG DNA ….......13 1.5 The association between CpG ODN and TLR9………………………………......14 1.6 CpG ODN mimics the stimulatory activity of microbial DNA via TLR9…….14 1.7 CpG and MAPKs...........................14 1.8 Dual functions of SP-D……………………………………………………...15 1.9 The aim of the study…………………………………………………………....15 Materials and Methods 2.1 Preparation of Recombinant human surfactant protein D…………………16 2.2 MH-S cell culture………………………………………………………………..16 2.3 Efficiency assay of CpG ODN uptake...………………………………………17 2.4. TLR9 RT-PCR assay………………...…………………………………………..18 2.4.1 RNA extraction…………………………………………………………….....18 2.4.2 cDNA synthesis………………………………………………………………...18 2.4.3 Polymerase chain reaction (PCR)……………………………………………19 2.5 Intracellular TLR9 immunofluorescence staining………………………….19 2.6 TNFα ELISA…………………………………………………………………….....20 2.6.1 Dose- and time-effects of CpG ODN on TNFα production 2.6.2 The effect of native SP-D on CpG ODN induced TNFα production 2.6.3 The effect of recombinant SP-D on CpG ODN induced TNFα production 2.6.4 The effects of MAPK inhibitors on CpG ODN induced TNFα production 2.7 Measurement of NO expression by nitrite assay (Griess reaction)……22 2.7.1 Dose- and time-effects of CpG ODN on nitric oxide production 2.7.2 The effect of SP-D on CpG ODN induced nitric oxide production 2.8 Cell lysate preparation………………………………………………………….23 2.9 Protein concentration determination…………………………………………23 2.10 Western blot…………………………………………………………………...23 Results…………………………………………………………………..25 Discussion………………………………………………………………30 References………………………………………………………………33 Figures…………………………………………………………………..39 Appendixes……………………………………………………………...56

    Arthur M. Krieg. CpG motif in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20: 709-760, 2002.

    Alblas J, Honing H, de Lavalette CR, Brown MH, Dijkstra CD, van den Berg TK. Signal regulatory protein alpha ligation induces macrophage nitric oxide production through JAK/STAT- and phosphatidylinositol 3-kinase/Rac1/NAPDH oxidase/H2O2-dependent pathways. Mol Cell Biol. 16:7181-7192, 2005

    Bauer, S., Kirschning, C. J., Hacker, H., Redecke, V., Hausmann, S.,Akira, S., Wagner, H. et al., Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl. Acad. Sci. USA 98: 9237-9242, 2001.

    Coppolino, M.G., and Dedhar, S. Calreticulin. Int. J. Biochem. Cell Biol. 30:553-558, 1998

    Clark H, Palaniyar N, Strong P, Edmondson J, Hawgood S, Reid KB. Surfactant protein D reduces alveolar macrophage apoptosis in vivo. J Immunol. 169:2892-9, 2002

    Campbell J, Ciesielski CJ, Hunt AE, Horwood NJ, Beech JT, Hayes LA, Denys A, Feldmann M, Brennan FM, Foxwell BM. A Novel Mechanism for TNF- Regulation by p38 MAPK:Involvement of NF-κB with Implications for Therapy in Rheumatoid Arthritis. J. Immunol. 173: 6928–6937, 2004

    Eggleton, P., Lieu, T.S., Zappi, E.G., Sastry, K., Coburn, J., Zaner, K.S., Sontheimer, R.D., Capra, J.D., Ghebrehiwet, B. and Tauber, A.I.. Calreticulin is released from activated neutrophils and binds to C1q and mannan-binding protein. Clin. Immunol. Immunopathol. 72:405-409, 1994

    Gardai SJ, Xiao YQ, Dickinson M, Nick JA, Voelker DR, Greene KE, Henson PM. By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell. 115:13-23, 2003

    Hartshorn KL, Crouch EC, White MR, Eggleton P, Tauber AI, Chang D, Sastry K. Evidence for a protective role of pulmonary surfactant protein D (SP-D) against influenza A viruses. J Clin Invest. 94:311-9, 1994

    Hartshorn KL, Reid KB, White MR, Jensenius JC, Morris SM, Tauber AI, Crouch E. Neutrophil deactivation by influenza A viruses: mechanisms of protection after viral opsonization with collectins and hemagglutination-inhibiting antibodies. Blood. 15;87: 3450-61,1996

    Hartshorn KL, White MR, Shepherd V, Reid K, Jensenius JC, Crouch EC. Mechanisms of anti-influenza activity of surfactant proteins A and D: comparison with serum collectins. Am J Physiol. 273(6 Pt 1):L1156-66, 1997
    .
    Hornung, V., Rothenfusser, S., Britsch, S., Krug, A., Jahrsdorfer, B.,Giese, T., Endres, S. et al. Quantitative expression of Toll-likereceptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol. 168: 4531-4537, 2002.

    Heckelsmiller K, Beck S, Rall K, Sipos B, Schlamp A, Tuma E, Rothenfusser S, Endres S, Hartmann G. Combined dendritic cell- and CpG oligonucleotides-based immune therapy cures large murine tumors that resist chemotherapy. Eur. J. zimmunol. 32: 3235-3245, 2002

    He H, Kogut MH. CpG-ODN-induced nitric oxide production is mediated through clathrin-dependent endocytosis, endosomal maturation, and activation of PKC, MEK1/2 and p38 MAPK, and NF-kappaB pathways in avian macrophage cells (HD11). Cell Signal.15:911-7, 2003

    Hacker H, Redecke V, Blagoev B, Kratchmarova I, Hsu LC, Wang GG, Kamps MP, Wagner H, Hacker G, Mann M, Karin M. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature.12: 204-7, 2006

    Jiang Z, Ninomiya-Tsuji J, Qian Y, Matsumoto K, Li X. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol 22: 7158–67, 2002

    Janssens, S., Beyaert, R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol. Cell 11: 293–302, 2003

    Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky
    GA, Klinman DM. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 6546–49, 1995.

    Kobayashi, K., L. D. Hernandez, J. E. Galan, C. A. Janeway, Jr., R. Medzhitov, and R. A. Flavell. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110: 191-202, 2002

    Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colonna M.Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood.103:1433-1437, 2004

    Lim BL, Wang JY, Holmskov U, Hoppe HJ, Reid KB.Expression of the carbohydrate recognition domain of lung surfactant protein D and demonstration of its binding to lipopolysaccharides of gram-negative bacteria. Biochem. Biophys. Res. Commun.202: 1674-1680, 1994

    Lee, J. C., J. T. Laydon, P. C. McDonnell, T. F. Gallagher, S. Kumar, D. Green, D. McNulty, M. J. Blumenthal, J. R. Heys, S. W. Landvatter, et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372:739, 1994

    Li, L., Cousart, S., Hu, J., McCall, C.E. Characterization of interleukin-1 receptor- associated kinase in normal and endotoxin-tolerant cells. J.Biol. Chem. 275: 23340-23345, 2000

    Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A. Toll-like Receptor 9–mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med. 198: 513-20, 2003

    Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nature Immunology 5, 190 – 198, 2004

    Lee S, Hong J, Choi SY, Oh SB, Park K, Kim JS, Karin M, Lee SJ. CpG oligodeoxynucleotides induce expression of proinflammatory cytokines and chemokines in astrocytes: the role of c-Jun N-terminal kinase in CpG ODN-mediated NF-κB activation. Journal of Neuroimmunology 153: 50-63, 2004

    Liu CF, Chen YL, Chang WT, Shieh CC, Yu CK, Reid KB, Wang JY. Mite allergen induces nitric oxide production in alveolar macrophage cell lines via CD14/toll-like receptor 4, and is inhibited by surfactant protein D. Clin Exp Allergy. 35:1615-24, 2005

    Liang SH, Zhang W, McGrath BC, Zhang P, Cavener DR. PERK (eIF2alpha kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis. Biochem J. Jan 393(Pt 1):201-209, 2006

    Nishiya T, DeFranco AL. Ligand-regulated chimeric receptor approach reveals distinctive subcellular localization and signaling properties of the Toll-like receptors. J Biol Chem. 18:19008-17, 2004
    Pollock J, McFarlane SM, Connell MC, Zehavi U, Vandenabeele P, MacEwan DJ, Scott RH. TNF-alpha receptors simultaneously activate Ca2+ mobilisation and stress kinases in cultured sensory neurones. Neuropharmacology. 42(1):93-106, 2002
    Palaniyar N, Nadesalingam J, Clark H, Shih MJ, Dodds AW, Reid KB. Nucleic acid is a novel ligand for innate, immune pattern recognition collectins surfactant proteins A and D and mannose-binding lectin. J. Biol. Chem., 279: 32728-32736, 2004

    Rutz M, Metzger J, Gellert T, Luppa P, Lipford GB, Wagner H, Bauer S. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol. 34:2541-50, 2004

    Rao.N, Nguyen.S, Ngo.K, and Wai-Ping Fung-Leung. Novel Splice Variant of Interleukin-1 receptor (IL-1R)-associated kinase 1 plays a negative regulatory role in Toll/IL-1R-induced inflammatory signaling. Mol. Cell. Biol. 25:6521–6532, 2005

    Roberts TL, Sweet MJ, Hume DA, Stacey KJ. Cutting edge: species-specific TLR9-mediated recognition of CpG and non-CpG phosphorothioate - modified oligonucleotides. J. Immunol. 174: 605-608, 2005

    Stuart GR, Lynch NJ, Day AJ, Schwaeble WJ, Sim RB. The C1q and collectin binding site within C1q receptor (cell surface calreticulin). Immunopharmacology. 38:73-80, 1997

    Sim, R.B., Moestrup, S.K., Stuart, G.R., Lynch, N.J., Lu, J., Schwaeble, W.J. and Malhotra, R.. Interaction of C1q and the collectins with the potential receptors calreticulin (cC1qR/collectin receptor) and megalin. Immunobiology 199: 208–224, 1998.

    Sweet MJ, Leung BP, Kang D, Sogaard M, Schulz K, Trajkovic V, Campbell CC, Xu D, Liew FY. A novel pathway regulating lipopolysaccharide-induced shock by ST2/T1 via inhibition of Toll-like receptor 4 expression. J Immunol.166:6633-9, 2001

    Singh M, Madan T, Waters P, Parida SK, Sarma PU, Kishore U. Protective effects of a recombinant fragment of human surfactant protein D in a murine model of pulmonary hypersensitivity induced by dust mite allergens. Immunol Lett.86:299-307, 2003

    Sano H, Kuronuma K, Kudo K, Mitsuzawa H, Sato M, Murakami S, Kuroki Y. Regulation of inflammation and bacterial clearance by lung collectins. Respirology. 11 Suppl: S46-50, 2006

    Takeshita F, Leifer CA, Gursel I, Ishii KJ, Takeshita S, Gursel M, et al. Cutting edge: role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J.Immunol 167:3555–8, 2001

    Vandivier, R.W., Ogden, C.A., Fadok, V.A., Hoffmann, P.R., Brown, K.K., Botto, M., Walport, M.J., Fisher, J.H., Henson, P.M. and Greene, K.E.. Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J. Immunol. 169: 3978–3986, 2002.

    van de Wetering JK, van Eijk M, van Golde LM, Hartung T, van Strijp JA, Batenburg JJ. Characteristics of Surfactant Protein A and D Binding to lipoteichoic acid and peptidoglycan, 2 Major Cell Wall Components of Gram-Positive Bacteria. J. Infect. Dis. 184:1143-1151, 2001

    Wang JY, Kishore U, Lim BL, Strong P, Reid KB. Interaction of human lung surfactant proteins A and D with mite (Dermatophagoides pteronyssinus) allergens. Clin Exp Immunol. 106:367-73, 1996

    Wang JY, Shieh CC, You PF, Lei HY, Reid KBM. The inhibitory effect of pulmonary surfactant protein A and D on allergen-induced lymphocyte proliferation and histamine released in asthmatic children. Am J Respir Crit Care Med 158:510-518, 1998

    Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C., and Mattick, J. S. Extracellular DNA required for bacterial biofilm formation. Science 295:1487, 2002

    Wu H, Kuzmenko A, Wan S, Schaffer L, Weiss A, Fisher JH, Kim KS, McCormack FX. Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability. J Clin Invest.111:1589-602, 2003

    Young, P., P. McDonnell, D. Dunnington, A. Hand, J. Laydon, and J. Lee. Pyridinyl imidazoles inhibit IL-1 and TNF production at the protein level. Agents Actions 39:C67, 1993

    Zhao Q, Matson S, Herrera CJ, Fisher E, Yu H and Krieg AM. Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. Antisense Res. Dev. 3: 53–66, 1993
    Zou W, Amcheslavsky A, Bar-Shavit Z. CpG oligodeoxynucleotides modulate the osteoclastogenic activity of osteoblasts via Toll-like Receptor 9. J. Biol. Chem., 278:16732-16740, 2003

    下載圖示 校內:2007-07-10公開
    校外:2007-07-10公開
    QR CODE