| 研究生: |
林玉富 Lin, Yu-Fu |
|---|---|
| 論文名稱: |
蝴蝶蘭中PCF及CIN基因家族的特性分析 Functional Characterization of PCF-like and CIN-like gene families in Phalaenopsis |
| 指導教授: |
蔡文杰
Tsai, Wen-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 熱帶植物科學研究所 Institute of Tropical Plant Sciences |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | bHLH 、TCP轉錄因子 、CIN 、PCF 、SRDX 、EAR 、植物發育 、形態分析 、蝴蝶蘭 、阿拉伯芥 |
| 外文關鍵詞: | bHLH, TCP transcription factor, CIN, PCF, SRDX, EAR, plant development, morphometric analysis, Phalaenopsis, Arabidopsis thaliana |
| 相關次數: | 點閱:133 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蝴蝶蘭是高經濟價值花卉作物之一。隨著美麗的花卉形態,不同花色和花期長而廣泛受人喜愛。植物特有的TEOSINTE BRANCHED1, CYCLOIDEA, PCF (TCP)轉錄因子家族轉譯出有著bHLH motif的TCP domain而能與DNA結合及進行蛋白質間的相互作用。根據TCP domain序列的差異,TCP轉錄因子被區分成兩群,它們是植物形態和結構的主要調節者,是造成植物演化上多樣性的原因之一。此外,對TCP 轉錄因子於細胞增殖及植物賀爾蒙反應相關的許多路徑之調控亦扮演重要的角色。本研究分析了蝴蝶蘭第一群PCF亞家族基因及第二群CIN亞家族基因。在OrchidBase資料庫中我們鑑定了20個基因屬於PCF及CIN亞家族,演化分析結果顯示,11個PCF基因和9個CIN基因存在於蝴蝶蘭基因組中。經半定量RT-PCR的檢測證實10個PCF和8個CIN基因表現於營養組織,生殖組織及胚珠發育時期。然而有1個PCF基因和1個CIN基因在檢測中沒有偵測到有表現。我們進一步分析了蝴蝶蘭第一群TCP轉錄因子中的PCF10及第二群TCP轉錄因子中的CIN8。酵母菌雙雜合分析結果顯示了PeCIN8蛋白能形成同源雙聚體,但無法和PePCF10形成異源雙聚體。而PePCF10不能形成同源雙聚體,也無法和PeCIN8形成異源雙聚體。細胞胞器定位實驗證實它們位於細胞核中。在轉基因阿拉伯芥結果顯示(過量表現或顯著抑制表現),這兩個基因影響植物的大小,開花時間及繁殖並透過調節細胞分裂影響輪狀葉的型態。整體而言,本研究結果顯示PePCF10和PeCIN8轉錄因子是一個有著廣泛表達模式的核蛋白且兩者在植物發育過程中扮演著重要作用。這些結果亦提供有關PeTCPs在蝴蝶蘭發育中所扮演角色之見解。
Phalaenopsis is one of the high economic value of flower crops. As the beautiful floral morphology, diverse flower colour and long florescence duration are widely loved by people. A small family of Plant-specific TEOSINTE BRANCHED1, CYCLOIDEA, PCF (TCP) transcription factors encoding proteins sharing TCP domain with a bHLH motif that allows DNA binding and protein–protein interactions. According to slightly different TCP domains, TCP proteins are separated into two clades, including class I and class II. They are the main regulators of plant form and architecture and constitute a tool through which evolution shapes plant diversity. The TCP transcription factors act in a multiplicity of pathways related with cell proliferation and hormone responses. This study characterized the class I PCF and class II CIN gene subfamilies in the Phalaenopsis. We identified 20 genes belong to the PCF and CIN subfamilies in the OrchidBase. Phylogenetic analysis showed that 11 PCF genes and 9 CIN genes exist in the Phalaenopsis genome. RT-PCR results showed that 10 PCF genes and 8 CIN genes expressed in the vegetative tissue, reproductive tissue and developmental ovule stages. However, 1 PCF gene and 1 CIN gene were not detected by RT-PCR. Further, we characterized the function of the class I TCP transcription factor PePCF10 and the class II TCP transcription factor PeCIN8. Yeast-two hybrid assay results showed that strong interaction of PeCIN8 homodimers. However, PeCIN8 can not form heterodimer with PePCF10. In addition, PePCF10 could not form homodimers as well as heterodimers with PeCIN8. Subcellular localization experiments confirmed that both of two gene products localize in the nucleus. In transgenic Arabidopsis thaliana plants (overexpression and SRDX dominantly represses), the two genes display a range of growth-related phenotypes, consistent with their dynamic expression patterns. The two genes influence plant stature, flowering time, plant reproduction and morphogenesis of shoot lateral organs that via modulate cell division. Overall, our results show that PePCF10 and PeCIN8 transcription factors are a nuclear protein with a widely expression pattern and both of them appear to be playing an important role during plant development and provide some insights about the function of PeTCPs in the development of Phalaenopsis.
Aguilar-Martinez JA, Sinha N, 2013. Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Front Plant Sci 4, 406.
Baba K, Nakano T, Yamagishi K, Yoshida S, 2001. Involvement of a Nuclear-Encoded Basic Helix-Loop-Helix Protein in Transcription of the Light-Responsive Promoter ofpsbD. Plant Physiol 125, 595-603.
Balsemão-Pires E, Andrade LR, Sachetto-Martins G, 2013. Functional study of TCP23 in Arabidopsis thaliana during plant development. Plant Physiology and Biochemistry 67, 120-5.
Becker D, 1990. Binary vectors which allow the exchange of plant selectable markers and reporter genes. Nucleic Acids Res 18, 203.
Bemis SM, Torii KU, 2007. Autonomy of cell proliferation and developmental programs during Arabidopsis aboveground organ morphogenesis. Dev Biol 304, 367-81.
Chen FC, Mangai Kasthuri G., Tsai YJ, et al., 2013. Approaches and Perspectives towards Molecular Breeding of Orchids. Retrieved July 8, 2014, from National Pingtung University of Science & Technology, Department of Plant Industry Web site: http://webcache.googleusercontent.com/search?q=cache:bjy0jJMKgPoJ:www.ecaa.ntu.edu.tw/weifang/eBook/%25B3%25AF%25BA%25D6%25BAXtalk/20.orchid%2520molecular%2520breeding.doc+&cd=2&hl=zh-TW&ct=clnk&gl=tw
Chen YY. 2011. Functional characterization of D-class MADS-box gene PeMADS7 from Phalaenopsis equestris. Master Thesis, National Cheng Kung University, Tainan.
Chen YY, Lee PF, Hsiao YY, et al., 2012. C- and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development. Plant Cell Physiol 53, 1053-67.
Christenson, E.A. 2001. Phalaenopsis : A Monograph. Timber Press, Portland, Or.
Clough SJ, Bent AF, 1998. Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal 16, 735-43.
Cubas P, Lauter N, Doebley J, Coen E, 1999. The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal 18, 215-22.
Danisman S, Van Der Wal F, Dhondt S, et al., 2012. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol 159, 1511-23.
Ding L, Wang Y, Yu H, 2013. Overexpression of DOSOC1, an Ortholog of Arabidopsis SOC1, Promotes Flowering in the Orchid Dendrobium Chao Parya Smile. Plant and Cell Physiology 54, 595-608.
Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M, 2000. Arabidopsis Ethylene-Responsive Element Binding Factors Act as Transcriptional Activators or Repressors of GCC Box–Mediated Gene Expression. The Plant Cell Online 12, 393-404.
Giraud E, Ng S, Carrie C, et al., 2010. TCP Transcription Factors Link the Regulation of Genes Encoding Mitochondrial Proteins with the Circadian Clock in Arabidopsis thaliana. The Plant Cell Online 22, 3921-34.
Griesbach RJ. 2002. Development of Phalaenopsis orchids for the mass-market. In: J. Janick and A. Whipkey (eds.). ASHS Press, 458–465, Alexandria, VA.
Hammani K, Gobert A, Hleibieh K, Choulier L, Small I, Giege P, 2011. An Arabidopsis Dual-Localized Pentatricopeptide Repeat Protein Interacts with Nuclear Proteins Involved in Gene Expression Regulation. Plant Cell 23, 730-40.
Herve C, Dabos P, Bardet C, et al., 2009. In Vivo Interference with AtTCP20 Function Induces Severe Plant Growth Alterations and Deregulates the Expression of Many Genes Important for Development. Plant Physiol 149, 1462-77.
Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M, 2003. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. The Plant Journal 34, 733-9.
Hiratsu K, Mitsuda N, Matsui K, Ohme-Takagi M, 2004. Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repression of transcription in Arabidopsis. Biochem Biophys Res Commun 321, 172-8.
Hiratsu K, Ohta M, Matsui K, Ohme-Takagi M, 2002. The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers. FEBS Lett 514, 351-4.
Ivana L. Viola NGUM, Rodrigo Ripoll and Daniel H. Gonzalez, 2011. The Arabidopsis class I TCP transcription factor AtTCP11 is a developmental regulator with distinct DNA-binding properties due to the presence of a threonine residue at position 15 of the TCP domain Biochemical Journal 435, 143-55.
Kagale S, Rozwadowski K, 2011. EAR motif-mediated transcriptional repression in plants: An underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6, 141-6.
Karimi M, Bleys A, Vanderhaeghen R, Hilson P, 2007. Building blocks for plant gene assembly. Plant Physiol 145, 1183-91.
Kieffer M, Master V, Waites R, Davies B, 2011. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. The Plant Journal 68, 147-58.
Komeda Y, 2004. Genetic Regulation of Time to Flower Inarabidopsis Thaliana. Annual Review of Plant Biology 55, 521-35.
Kosugi S, 1997. PCF1 and PCF2 Specifically Bind to cis Elements in the Rice Proliferating Cell Nuclear Antigen Gene. The Plant Cell Online 9, 1607-19.
Kosugi S, Ohashi Y, 2002. DNA binding and dimerization specificity and potential targets for the TCP protein family. The Plant Journal 30, 337-48.
Koyama T, Furutani M, Tasaka M, Ohme-Takagi M, 2007. TCP Transcription Factors Control the Morphology of Shoot Lateral Organs via Negative Regulation of the Expression of Boundary-Specific Genes in Arabidopsis. The Plant Cell Online 19, 473-84.
Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M, 2010. TCP Transcription Factors Regulate the Activities of ASYMMETRIC LEAVES1 and miR164, as well as the Auxin Response, during Differentiation of Leaves in Arabidopsis. The Plant Cell Online 22, 3574-88.
Koyama T, Ohme-Takagi M, Sato F, 2011. Generation of serrated and wavy petals by inhibition of the activity of TCP transcription factors in Arabidopsis thaliana. Plant Signaling & Behavior 6, 697-9.
Li S, Gutsche N, Zachgo S, 2011. The ROXY1 C-Terminal L**LL Motif Is Essential for the Interaction with TGA Transcription Factors. Plant Physiol 157, 2056-68.
Li S, Zachgo S, 2013. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. Plant J 76, 901-13.
Li Z, Li B, Shen W-H, Huang H, Dong A, 2012. TCP transcription factors interact with AS2 in the repression of class-I KNOX genes in Arabidopsis thaliana. The Plant Journal 71, 99-107.
Li ZY, Li B, Dong AW, 2011c. The Arabidopsis Transcription Factor AtTCP15 Regulates Endoreduplication by Modulating Expression of Key Cell-cycle Genes. Molecular Plant 5, 270-80.
Manassero NGU, Viola IL, Welchen E, Gonzalez DH, 2013. TCP transcription factors: architectures of plant form. Biomol Concepts 4, 111-127.
Martín-Trillo M, Cubas P, 2010. TCP genes: a family snapshot ten years later. Trends in Plant Science 15, 31-9.
Melzer R, Theißen G, 2011. MADS and More: Transcription Factors That Shape the Plant. 754, 3-18.
Mitsuda N, Matsui K, Ikeda M, et al., 2011. CRES-T, An Effective Gene Silencing System Utilizing Chimeric Repressors. In: Yuan L, Perry SE, eds. Plant Transcription Factors. Humana Press, 87-105. (Methods in Molecular Biology; vol. 754.)
Mondragon-Palomino M, 2013. Perspectives on MADS-box expression during orchid flower evolution and development. Front Plant Sci 4, 1-9.
Mondragon-Palomino M, Trontin C, 2011. High time for a roll call: gene duplication and phylogenetic relationships of TCP-like genes in monocots. Ann Bot 107, 1533-44
Nadeau JA, Zhang XS, Li J, O'neill SD, 1996. Ovule development: identification of stage-specific and tissue-specific cDNAs. The Plant Cell Online 8, 213-39.
Nath U, Crawford BCW, Carpenter R, Coen E, 2003. Genetic Control of Surface Curvature. Science 299, 1404-7.
Navaud O, Dabos P, Carnus E, Tremousaygue D, Hervé C, 2007. TCP Transcription Factors Predate the Emergence of Land Plants. Journal of Molecular Evolution 65, 23-33.
Ori N, Cohen AR, Etzioni A, et al., 2007. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39, 787-91.
Pagnussat GC, Yu H-J, Ngo QA, et al., 2005. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132, 603-14.
Palatnik JF, Allen E, Wu X, et al., 2003. Control of leaf morphogenesis by microRNAs. Nature 425, 257-63.
Pan ZJ, Chen YY, Du JS, et al., 2014. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes. New Phytol.
Porras-Alfaro A, Bayman P, 2007. Mycorrhizal fungi of Vanilla: diversity, specificity and effects on seed germination and plant growth. Mycologia 99, 510-25.
Pruneda-Paz JL, Breton G, Para A, Kay SA, 2009. A Functional Genomics Approach Reveals CHE as a Component of the Arabidopsis Circadian Clock. Science 323, 1481-5.
Rueda-Romero P, Barrero-Sicilia C, Gomez-Cadenas A, Carbonero P, Onate-Sanchez L, 2011. Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14. J Exp Bot 63, 1937-49.
Sarvepalli K, Nath U, 2011. Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. The Plant Journal 67, 595-607.
Schommer C, Palatnik JF, Aggarwal P, et al., 2008. Control of Jasmonate Biosynthesis and Senescence by miR319 Targets. PLoS Biol 6, e230.
Serrano-Cartagena J, Candela H, Robles P, et al., 2000. Genetic Analysis of incurvata Mutants Reveals Three Independent Genetic Operations at Work in Arabidopsis Leaf Morphogenesis. Genetics 156, 1363-77.
Steiner E, Efroni I, Gopalraj M, et al., 2012a. The Arabidopsis O-Linked N-Acetylglucosamine Transferase SPINDLY Interacts with Class I TCPs to Facilitate Cytokinin Responses in Leaves and Flowers. Plant Cell 24, 96-108.
Steiner E, Yanai O, Efroni I, Ori N, Eshed Y, Weiss DS, 2012b. Class I TCPs modulate cytokinin-induced branching and meristematic activity in tomato. Plant Signaling & Behavior 7, 807-10.
Strayer C, Oyama T, Schultz TF, et al., 2000. Cloning of the Arabidopsis Clock Gene TOC1, an Autoregulatory Response Regulator Homolog. Science 289, 768-71.
Suzuki T, Sakurai K, Ueguchi C, Mizuno T, 2001. Two Types of Putative Nuclear Factors that Physically Interactwith Histidine-Containing Phosphotransfer (Hpt) Domains, SignalingMediators in His-to-Asp Phosphorelay, in Arabidopsisthaliana. Plant and Cell Physiology 42, 37-45.
Takeda T, Amano K, Ohto M-A, et al., 2006. RNA Interference of the Arabidopsis Putative Transcription Factor TCP16 Gene Results in Abortion of Early Pollen Development. Plant Molecular Biology 61, 165-77.
Tamura K, Dudley J, Nei M, Kumar S, 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24, 1596-9.
Tatematsu K, Nakabayashi K, Kamiya Y, Nambara E, 2008. Transcription factor AtTCP14 regulates embryonic growth potential during seed germination inArabidopsis thaliana. The Plant Journal 53, 42-52.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG, 1997. The CLUSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Nucleic Acids Res 25, 4876-82.
Tsai W-C, Hsiao Y-Y, Pan Z-J, et al., 2008. Molecular Biology of Orchid Flowers with emphasis on Phalaenopsis. 47, 99-145.
Tsai W-C, Kuoh C-S, Chuang M-H, Chen W-H, Chen H-H, 2004. Four DEF-Like MADS Box Genes Displayed Distinct Floral Morphogenetic Roles in Phalaenopsis Orchid. Plant and Cell Physiology 45, 831-44.
Tsukaya H, 2006. MECHANISM OF LEAF-SHAPE DETERMINATION. Annual Review of Plant Biology 57, 477-96.
Viola IL, Uberti manassero NG, Ripoll R, Gonzalez DH, 2011. The Arabidopsis class I TCP transcription factor AtTCP11 is a developmental regulator with distinct DNA-binding properties due to the presence of a threonine residue at position 15 of the TCP domain. Biochemical Journal 435, 143-55.
Wang MY, Zhao PM, Cheng HQ, et al., 2013. The Cotton Transcription Factor TCP14 Functions in Auxin-Mediated Epidermal Cell Differentiation and Elongation. Plant Physiol 162, 1669-80.
Yan D, Duermeyer L, Leoveanu C, Nambara E, 2014. The functions of the endosperm during seed germination. Plant and Cell Physiology.
Yanai O, Shani E, Russ D, Ori N, 2011. Gibberellin partly mediates LANCEOLATE activity in tomato. The Plant Journal 68, 571-82.
Yang C, Li D, Mao D, et al., 2013. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant, Cell & Environment 36, 2207-18.
Yang X, Pang HB, Liu BL, et al., 2012. Evolution of double positive autoregulatory feedback loops in CYCLOIDEA2 clade genes is associated with the origin of floral zygomorphy. Plant Cell 24, 1834-47.
Zhang XS, O'neill SD, 1993. Ovary and Gametophyte Development Are Coordinately Regulated by Auxin and Ethylene following Pollination. The Plant Cell Online 5, 403-18.
校內:2019-09-09公開