| 研究生: |
田偉中 Tien, Wei-chung |
|---|---|
| 論文名稱: |
應用晶格波茲曼法與場協同理論於質子交換膜燃料電池雙極板流道之分析 Simulation of gas flow characteristic in bipolar plate channel of PEMFC by LBM with the field synergy principle |
| 指導教授: |
陳朝光
Chen, Chao-Kuang 楊玉姿 Yang, Yue-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 場協同理論 、質子交換膜燃料電池 、障礙物 、晶格波茲曼法 |
| 外文關鍵詞: | field synergy principle, Lattice Boltzmann Method, obstacles, PEMFC |
| 相關次數: | 點閱:87 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,利用晶格波茲曼法模擬質子交換膜燃料電池雙極板之流道,模擬範圍包含了流體在雙極板流道和擴散層中流動、擴散與熱傳現象,屬於低雷諾數二維穩態不可壓縮的流場。文中探討流道之壁面在置入不同幾何形狀障礙物後的影響,本文總共考慮了三種不同幾何形狀的障礙物,分別為半圓形、三角形與sine波。同時也改變障礙物的尺寸大小,並與傳統的直流管流道互相比較,發現藉由障礙物的存在增加了對流機制的效應,有效提升流體傳輸至擴散層的量與速度,同時也因為障礙物在流場中扮演擾動的角色,改變了流體的流動路線,在障礙物後側形成的環狀迴流區影響了通過的流體,因而增強局部區域內的熱傳效能。模擬得到的結果不論是熱傳效能或是傳輸至擴散層的流體速度比較而言,置入半圓形障礙物最佳、sine波次之、三角形最後。
對於置入障礙物後的流場之熱傳增強分析利用場協同理論來驗證得到的數值解趨勢,透過速度場與溫度梯度場之間的協同角越小,表示其協同程度越好,進而幫助熱傳量的增加。
This study applies the Lattice Boltzmann Method (LBM) to simulate gas flow characteristic in bipolar plate channel of Proton Exchange Membrane Fuel Cells (PEMFCs). The calculated domain includes fluid flow, diffusion, and heat transfer performance in bipolar plate and the porous layer which is been considered as a two-dimensional incompressible steady flow under low Reynolds number. In addition, the interruption within the fluid is induced by different type of obstacles: semicircle, triangularity, and sinusoid. The simulation results show that compared to the straight geometry of a conventional gas flow channel, the wavy-like configuration enhances the transport through the porous layer. The obstacles play the role of causing interruption within the fluid field. The direction of fluid flow toward is changed by obstacles, and the recirculation region formed behind obstacles influence the fluid pass through. As mentioned above, temperature distribution within the channel is improved in local region. According to the simulation results of the heat transfer efficiency and the mass flow rate into diffusion layer, the half circle obstacle has the best performance, followed is the sine wavy obstacle and the tranglar obstacle is ranked third.
Furthermore, the present numerical results are consistent with the field synergy principle, which states that the convective heat transfer is enhanced when the intersection angle between the velocity and the temperature gradient vector decreased by inserting obstacles to fluid field. The results of heat transfer improved significantly.
Abbassi, Hassen, & Turki, Said., & Nasrallah, Sassi Ben., “Numerical investigation of forced convection in a plane channel with a built-in triangular prism”, Int. J. Therm. Sci., Vol. 40, pp. 649-658, 2001.
Alexander, F. J., & Chen, S., & Stering, J. D., “Lattice Boltzmann thermohydrodynamics”, Phys. Rev. E, Vol. 47, pp. R2249-2252, 1993.
Bernsdorf, J., & Brenner, G., & Durst, F., “Numerical analysis of the pressure drop in porous media flow with lattice Boltzmann(BGK) automata”, Computer Physics Communications, Vol. 129, pp.247-255, 2000.
Bhatnagar, P.L., & Gross, E.P., & Krook, M., “A model for collision processes in gases. Ⅰ. Small amplitude processes in charged and nrutral one-component systems”, Phys. Rev., Vol. 94(3), pp. 511-525, 1954.
Breuer, M., & Bernsdorf, J., & Zeiser, T., & Durst, F., “Accurate computations of the laminar flow past a square cylinder based on two different method: lattice-Boltzmann and finite-volume”, Int. J. Heat Fluid Flow., Vol. 94(3), pp. 511-525, 2000.
Chakraborty, Jyoti, & Verma, Nishith, & Chhabra, R. P., “Wall effects in flow past a circular cylinder in a plane channel: a numerical study”, Chem. Eng. Process., Vol. 43, pp. 1529-1537, 2004.
Chen, Chao-Kuang, & Yen, Tzu-Shuang, & Yang, Yue-Tzu, “Lattice Boltzmann method simulation of backward-facing step on convective heat transfer with field synergy principle”, Int. J. Heat Mass Transfer, Vol. 49(5-6), pp. 1195-1204, 2006.
Chen, Chao-Kuang, & Kuo, J., K., “Nylon 6/CB polymeric conductive plastic bipolar plates for PEM fuel cells”, Journal of Applied Polymer Science, Vol. 101, pp. 3415-3421, 2006.
Chen, Hudong, & Chen, Shiyi, & Matthaeus, William H., “Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method”, Phys. Rev. A, Vol. 45, pp. R5339-5342, 1992.
Chen, Shiyi, & Martinez, Daniel, “On boundary condition in lattice Boltzmann methods”, Phys. Fluids, Vol. 8(9), pp. 2527-2536, 1996.
Chen, Shiyi, & Doolen, Gary D., “Lattice Boltzmann model for fluid flows”, Annu. Rev. Fluid Mech., Vol. 30, pp. 329-364, 1998.
d’Humiéres, D., & Lallemand, P., “Numerical simulations of hydrodynamics with lattice gas automata in two dimensions”, Complex Systems, Vol. 1, pp. 599-632, 1987.
Dieter, A. Wolf-Gladrow, “Lattice-gas cellular autimata and lattice Boltzmann models”, Springer, Germany, 2000.
Filippova, Olga, & Hänel, Dieter, “Grid refinement for lattice-BGK models”, J. Comput. Phys., Vol. 147(1), pp. 219-228, 1998.
Grunau, Daryl, & Chen, Shiyi, & Eggert, Kenneth, “A lattice Boltzmann model for multiphase fluid flows”, Phys. Fluids A, Vol. 5(10), pp. 2557-2562, 1993.
Guo, Zhaoli, & Zheng, Chuguang, & Shi, Baochang, “Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method”, Chinese Physics, Vol. 11(4), pp.366-374, 2002.
Guo, Zhaoli, & Zhao, T. S., “Lattice Boltzmann model for incompressible flows through porous media”, Phys. Rev. E, Vol. 66, pp. 036304, 2002.
Guo, Zhaoli, & Zheng, Chuguang, “An extrapolation method for boundary conditions in lattice Boltzmann method”, Phys. Fluids, Vol. 14(6), pp. 2007-2010, 2002.
Guo, Zhaoli, & Zheng, Chuguang, & Shi, Baochang, “Discrete lattice effects on the forcing term in the lattice Boltzmann method”, Phys. Rev. E, Vol. 65, pp. 046308, 2002.
Guo, Zhaoli, & Zhao, T. S., “A lattice boltzmann model for convection heat transfer in porous media”, Numerical Heat Transfer, Part B, Vol. 47, pp. 157-177, 2005.
Guo, Z. Y., & Tao, W. Q., & Shah, R. K., “The field synergy (coordination) principle and its application in enhancing single phase convective heat transfer”, Int. J. Heat Mass Transfer, Vol. 48, pp. 1797-1807, 2005.
Gupta, Abhishek K., & Sharma, Atul, & Chhabra, Rajendra P., & Eswaran, Vinayak, “Two-dimensional steady flow of a power-law fluid past a square cylinder in a plane channel: Momentum and heat-transfer characteristics”, Ind. Eng. Chem. Res., Vol. 42, pp. 5674-5686, 2003.
Gupte, S. K., & Advani, S. G., “Flow near the permeable boundary of a porous medium: An experimental investigation using LDA”, Experiment in Fluids, Vol. 22, pp. 408-422, 1997.
He, Xiaoyi, & Chen, Shiyi, & Doolen, Gary D., “A novel thermal model for the lattice Boltzmann in incompressible limit”, J. Comput. Phys., Vol. 146, pp. 282-300, 1998.
He, Xiaoyi, & Luo, Li-Shi, “Lattice Boltzmann model for the incompressible Navier-Stokes equation”, J. Stat. Phys., Vol. 88(3/4), pp. 927-944, 1997.
He, Xiaoyi, & Luo, Li-Shi, & Dembo, Micah, “Some progress in lattice Boltzmann method. Part1. Nonuniform mesh grids”, J. Comput. Physics, Vol. 129(2), pp. 357-363, 1996.
Higuera, F. J., & Jiménez, J., “Boltzmann approach to lattice gas simulations”, Europhys. Lett., Vol. 9(7), pp. 663-668, 1989.
Higuera, F. J., & Succi, S., & Benzi, R., “Lattice gas dynamics with enhanced collisions”, Europhys. Lett., Vol. 9(4), pp. 345-349, 1989.
Hou, Shuling, & Zou, Qisu, “Simulation of cavity flow by the lattice Boltzmann method” , J. Comput. Phys., Vol. 118, pp. 329-347, 1995.
Huang, Kerson, “Statistical mechanics”, John Wiley & Sons, 1987.
Inamuro, Takaji, & Yoshino, Masato, & Ogino, Fumimaru, “A non-slip condition for lattice Boltzmann simulattion”, Phys. Fluids, Vol. 7(12), pp. 2928-2930, 1995.
Incropera, Frank P., & DeWitt, David P., “Fundamentals of Heat and Mass Transfer”, John Wiley & Sons, 2002.
Korichi, Abdelkader, & Oufer, Lounes, “Numerical heat transfer in a rectangular channel with mounted obstacles on upper and lower walls”, Int. J. Therm. Sci., Vol. 44, pp. 644-655, 2005.
Kuo, J., K., & Chen, C., K., “A novel Nylon-6-S316L fiber compound material for injection molded PEM fuel cell bipolar plates”, Journal of Power Sources, Vol. 162, pp. 207-214, 2006.
Kuo, J., K., & Chen, C., K., “Evaluating the enhanced performance of a novel wave-like form gas flow channel in the PEMFC using the field synergy principle”, Journal of Power Sources, Vol. 162, pp. 1122-1129, 2006.
Kuo, J., K., & Chen, C., K., “The effects of buoyancy on the performance of a PEM fuel cell with a wave-like gas flow channel design by numerical investigation”, International Journal of Heat and Mass Transfer, In press, 2006.
Lim, C.Y., & Shu, C., & Niu, X. D., & Chew, Y.T., “Application of lattice Boltzmann model to simulate microchannel flows”, Physics of Fluids, Vol. 14(7), pp. 2299-2308, 2002.
McNamara, Guy R., & Zanetti, Gianluigi, “Use of the Boltzmann equation to simulate lattice-gas automata”, Physical Review Letters, Vol. 61(20), pp. 2332-2335, 1988.
Mei, Renwei, & Luo, Li-Shi, “An Accurate curved boundary treatment in the lattice Boltzmann method”, J. Comput. Phys., Vol. 155, pp. 307-330, 1999.
Munson, Bruce R., & Young, Donald F., & Okiishi, Theodore H., “Fundamentals of fluid mechanics”, Wiley, New York, 1998.
Noble, David R., & Chen, Shiyi, & Georgiadis, John G.., “A consistent hydrodynamic boundary condition for the lattice Boltzmann method”, Phys. Fluids, Vol. 7(1), pp. 203-209, 1995.
Pan, Chongxun, & Luo, Li-Shi, & Miller, Cass T., “An evaluation of lattice Boltzmann schemes for porous medium flow simulation”, Computers & Fluids, Vol. 35, pp.898-909, 2006.
Peng, Y., & Shu, C., & Chew Y. T., “Simplified thermal lattice Boltzmann model for incompressible thermal flows”, Phys. Rev. E, Vol. 68, pp. 026701, 2003.
Qian, Y. H., & d’Humiéres, D., & Lallemand, P., “Lattice BGK models for Navier-Stokes equation”, Europhy. Lett., Vol. 17(6), pp. 479-484, 1992.
Seta, Takeshi, & Takegoshi, Eishun, & Okui, Kenichi, “Lattice Boltzmann simulation of natural convection in porous media”, Mathematics and Computers in Simulation, Vol. 72, pp. 195-200, 2006.
Shan, Xiaowen, “Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method”, Phys. Rev. E, Vol. 55, pp. 2780-2788, 1997.
Shu, C., & Niu, X. D., & Chew, Y. T., “Taylor-series expansion and least-square-based lattice Boltzmann model: Two dimensional fprmulational and its application”, Phys. Rev. E, Vol. 65, pp. 036708, 2002.
Shu, C., & Peng, Y., & Chew, Y. T., “ Simulation of natural convection in a square cavity by Taylor series expansion and least-square-based lattice Boltzmann method”, Int. J. Mod. Phys. C, Vol. 13, pp. 1399-1414, 2002.
Singh, M., & Mohanty, K., K., “Permeability of spatially correlated porous media”, Chemical Engineering Science, Vol. 55, pp.5393-5403, 2000.
Skordos, P. A., “Initial and boundary conditions for the lattice Boltzmann method”, Phys. Rev. E, Vol. 48(6), pp. 4823-4842, 1993.
Succi, S., “The lattice Boltzmann equation for fluid dynamics and beyond”, Oxford university press, New York, 2001.
Succi, S., & Vergassola, M., & Benzi, R., “Lattice Boltzmann scheme for two-dimensional magnetohydrodynamics”, Phys. Rev. A, Vol. 43(8), pp. 4521-4524, 2001.
Tao, Wen Quan., & Guo, Zeng Yuan., & Wang, Bu Xuan, “Field synergy principle for enhancing convective heat transfer-its extension and numerical verification”, Int. J. Heat Mass Transfer, Vol. 45, pp. 3849-3856, 2002.
Tao, W. Q., & He, Y. L., & Wang, Q. W., & Qu, Z. G., & Song F. Q., “A unified analysis on enhancing single phase convective heat transfer with field synergy principle”, Int. J. Heat Mass Transfer, Vol. 45, pp. 4871-4879, 2002.
Wang, Lian-Ping, & Afsharpoya, Behnam, “Modeling fluid flow in fuel cells using the lattice-Boltzmann approach”, Mathematics and Computers in Simulation, Vol. 72, pp. 242-248, 2006.
Valencia, Alvaro, “Heat transfer enhancement in a channel with a built-in square cylinder”, Int. Commun. Heat Mass Transf., Vol. 22(1), pp. 47-58, 1995.
Yan, Wei-Wei, & Liu, Yang, & Guo, Zhao-Li, & Xu, You-Sheng, “LATTICE BOLTZMANN SIMULATION ON NATURAL CONVECTION HEAT TRANSFER IN A TWO-DIMENSIONAL CAVITY FILLED WITH HETEROGENEOUSLY POROUS MEDIUM”, International Journal of Modern Physics C, Vol. 17(6), pp.771-783, 2006.
Youngseuk Keehm, & Tapan Mukerji, & Amos Nur, “Computational rock physics at the pore scale: transport properties and diagenesis in realistic pore geometries”, The Leading Edge, Vol. 20(2), pp. 180-183, 2001.
Ziegler, D. P., “Boundary conditions for lattice Boltzmann simulation”, J. Stat. Phys., Vol. 71, pp. 1171-1177, 1993.
Zou, Qisu, & He, Xiaoyi, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model”, Phys. Fluids, Vol. 9(6), pp. 1591-1598, 1997.
Zovatto, Luigino, & Pedrizzetti, Gianni, “Flow about a cylinder between parallel walls”, J. Fluid Mech., Vol. 440, pp. 1-25, 2001.
王竹溪,「統計物理學導論」,凡異出版社,1985。
江孟璋,「應用FDLBM方法在高速進給熱傳系統之研究現象」,國立中正大學碩士論文,2003。
汪志誠,「熱力學與統計物理」,凡異出版社,1996。
吳大猷,「理論物理-熱力學、氣體運動及統計力學」,聯經出版社,1979。
祝玉學、趙學龍譯,「物理系統的元胞自動機模擬」,北京清華大學出版社,2003。
胡寬裕,「晶格波茲曼法於複雜幾何邊界之應用」,國立清華大學碩士論文,2003。
郭照立,「模擬不可壓縮流體流動的格子Boltzmann方法研究」,華中理工大學博士論文,2000。
張靚妍,「以晶格波茲曼法模擬液滴衝擊平板之變形過程」,國立中正大學碩士論文,2002。
過增元,「對流換熱的物理機制及其控制:速度與熱流場的協同」,科學通報,第45卷,第9期,pp. 2118-2122,2000。
過增元、黃素逸,「場協同原理與強化熱傳新技術」,中國電力出版社,2004。
楊志強,「以晶格波茲曼法模擬共軛熱傳」,國立中正大學碩士論文,2001。
韓光澤、華責、魏耀東,「傳遞過程強化的新途徑-場協同」,自然雜誌24,273-277,2002。
顏子翔,「應用晶格波茲曼法與場協同理論於不同阻礙物之背向階梯管道熱流分析」,國立成功大學博士論文,2006。