| 研究生: |
吳信毅 Wu, Hsin-Yi |
|---|---|
| 論文名稱: |
以鈦氧奈米材料應用於鋰離子電池負極之研究 Titanium oxides as anode materials in lithium-ion batteries |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 鋰離子電池 、單斜晶二氧化鈦 、鈦酸鋰 、奈米負極材料 |
| 外文關鍵詞: | Li-ion batteries, TiO2(B) nanosheets, Li4Ti5O12, anode materials |
| 相關次數: | 點閱:138 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
可快速充放電之鋰離子電池在使用的方便上不言可喻,而其對於電動車的應用而言更是關鍵,因此鋰離子電池在動力及儲能等方面的應用前景吸引了越來越多的關注。在電池負極的選擇上,與目前商業化的石墨碳相比,單斜晶二氧化鈦(TiO2(B))因其嵌鋰容量大、毒性小且能耗低、循環穩定性好、安全性能佳,被廣泛的認為具高功率電池潛力。
本研究以P25與氫氧化鈉利用水熱法方式製備TiO2(B)奈米片,透過參數的改變探討奈米片的成長及組成之影響,並探討其電化學行為的影響。由TEM、BET結果顯示,藉由水熱法方式在180 oC進行12 h反應,在6 M濃度可以獲得比表面積為100 m2 g-1的TiO2(B)奈米片。並由電性量測顯示在25次0.1C量測環境下,有良好的電容量維待率為96%、其可逆電容量為209 mAh g-1。
此外,利用低溫化學水浴法將SnO2修飾於TiO2(B)奈米片上,合成TiO2(B)/SnO2複合材料,並藉由XRD、TEM、ICP-MS及充放電測試等對材料進行了研究。結果顯示,經由水浴法可將SnO2奈米顆粒成長於TiO2(B)表面,並藉循環伏安法、充放電循環測試來了解複合材料的特性。從結果知,加入適量的SnO2所得複合材料,可以有效地提升鋰離子電池的電容量,並具有優良的循環壽命,其中SnO2添加量為21.44 wt %時,在1~3 V電壓區間,充放電流為0.1 C時,在50次測試下可維持651 mAh g-1可逆電容量及92 %良好的庫倫效率。
除了上述TiO2(B)負極材料受到矚目之外,Li4Ti5O12也受到注意。尖晶石(Spinel)結構之Li4Ti5O12,具有穩定的晶體結構,充放電所導致的體積變化率小,因此循環壽命極優,且嵌鋰電位為1.5 V,不會和電解液反應形成SEI膜,電池內阻抗不會上升。
本研究以鈦酸四丁酯與氫氧化鋰作為前驅物,利用水熱法製備Li4Ti5O12奈米片,並再藉由熱處理透過參數的改變探討奈米片的成長及組成之影響,並探討其電化學行為的影響。由XRD、TEM、BET結果顯示,在2 M氫氧化鋰及550 oC後熱處理可獲得的Li4Ti5O12奈米片並具有較高比表面積為94 m2 g-1,由電化學的量測顯示,這具備高比表積的Li4Ti5O12材料在20 C高倍率性能有優良的特性,且電容量可維持有150 mAh g-1。
為改善Li4Ti5O12導電性不佳問題並簡化製程流程,以鈦酸四丁酯與氫氧化鋰直接藉由熱處理方法製備Li4Ti5O12奈米材料。透過XRD、SEM、CV、EA及電化學性能量測結果顯示,在2 M氫氧化鋰及450 oC熱處理反應,可以成功獲得尖晶石Li4Ti5O12奈米粒材料,並具有最佳的電化學性能,在0.1 C倍率下首次充放電電容量可達200 mAh g-1,當電流增大到20 C,充放電電容量仍然保持在170 mAh g-1,經XAS分析可知,在低溫450 oC熱處理,獲得Ti3+的生成,改善了Li4Ti5O12的導電性,提升其電化學性能。
關鍵字:鋰離子電池、單斜晶二氧化鈦、鈦酸鋰、奈米負極材料
TiO2(B) nanosheets exhibit a surface area of 100 m2 g-1, which is larger than those obtained by solid-state reaction. The capability of lithium-ion battery could be strongly enhanced by TiO2(B) nanosheets to yield a discharge capacity higher than 200 mAh g-1, even upon 25 cycles of 0.1 C discharge-charge operations, showing highly reversible capacity and good cycling stability with excellent capacity retention of 96% with water-based binder. The TiO2(B)/SnO2 composites show a higher reversible capacity and better durability than that of the pure TiO2(B) for use as a battery anode. The composite electrodes exhibiting a high initial discharge capacity of 2239 mAh g-1 and a discharge capacity of more than 869 mAh g-1 could be maintained after 50 cycles at 0.1 C in a voltage range of 1.0 - 3.0 V at room temperature. Li4Ti5O12 nanosheets obtained by a hydrothermal method with 2 M LiOH and a followed heat treatment at 550 oC exhibit an outstanding stable capacity of 150 mAh g-1 at 20 C.
Keywords: TiO2(B) nanosheets, Li4Ti5O12, Hydrothermal synthesis, Li-ion batteries
[1] H.E. Park, I.W. Seong, W.Y. Yoon, Electrochemical behaviors of wax-coated Li powder/Li4Ti5O12 cells, Journal of Power Sources, 189 (2009) 499-502.
[2] T. Ohzuku, Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells, Journal of The Electrochemical Society, 142 (1995) 1431.
[3] K. Dokko, J.I. Sugaya, H. Munakata, K. Kanamura, Preparation of micro-dot electrodes of LiCoO2 and Li4Ti5O12 for lithium micro-batteries, Electrochimica Acta, 51 (2005) 966-971.
[4] C. Jiang, M. Ichihara, I. Honma, H. Zhou, Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode, Electrochimica Acta, 52 (2007) 6470-6475.
[5] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414 (2001) 359-367.
[6] K. Nakahara, R. Nakajima, T. Matsushima, H. Majima, Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells, Journal of Power Sources, 117 (2003) 131-136.
[7] D. Peramunage, K.M. Abraham, The Li4Ti5O12/PAN electrolyte//LiMn2O4 rechargeable battery with passivation-free electrodes, Journal of The Electrochemical Society, 145 (1998) 2615.
[8] T.F. Yi, J. Shu, Y.R. Zhu, A.N. Zhou, R.S. Zhu, Structure and electrochemical performance of Li4Ti5O12-coated LiMn1.4Ni0.4Cr0.2O4 spinel as 5V materials, Electrochemistry Communications, 11 (2009) 91-94.
[9] J.-i. Yamaki, S.-i. Tobishima, K. Hayashi, S. Keiichi, Y. Nemoto, M. Arakawa, A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte, Journal of Power Sources, 74 (1998) 219-227.
[10] R. Kanno, Y. Takeda, T. Ichikawa, K. Nakanishi, O. Yamamoto, Carbon as negative electrodes in lithium secondary cells, Journal of Power Sources, 26 (1989) 535-543.
[11] J. Besenhard, M. Hess, P. Komenda, Dimensionally stable Li-alloy electrodes for secondary batteries, Solid State Ionics, 40-41 (1990) 525-529.
[12] M. Lazzari, A cyclable lithium organic electrolyte cell based on two intercalation electrodes, Journal of The Electrochemical Society, 127 (1980) 773.
[13] E. Peled, Improved graphite anode for lithium-ion batteries chemically, Journal of The Electrochemical Society, 143 (1996) L4.
[14] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of Titanium Oxide Nanotube, Langmuir, 14 (1998) 3160-3163.
[15] Y.Q. Wang, G.Q. Hu, X.F. Duan, H.L. Sun, Q.K. Xue, Microstructure and formation mechanism of titanium dioxide nanotubes, Chemical Physics Letters, 365 (2002) 427-431.
[16] Z.Y. Yuan, J.F. Colomer, B.L. Su, Titanium oxide nanoribbons, Chemical Physics Letters, 363 (2002) 362-366.
[17] X. Zhang, B. Yao, L. Zhao, C. Liang, L. Zhang, Y. Mao, Electrochemical fabrication of single-crystalline anatase TiO2 nanowire arrays, Journal of The Electrochemical Society, 148 (2001) G398.
[18] S. Zhang, J. Zhou, Z. Zhang, Z. Du, A.V. Vorontsov, Z. Jin, Morphological structure and physicochemical properties of nanotube TiO2, Chinese Science Bulletin, 45 (2000) 1533-1536.
[19] M. Wagemaker, G.J. Kearley, A.A. Van Well, H. Mutka, F.M. Mulder, Multiple Li positions inside oxygen octahedra in lithiated TiO2 anatase, J Am Chem Soc, 125 (2003) 840-848.
[20] S.W. Han, J.H. Ryu, J. Jeong, D.H. Yoon, Solid-state synthesis of Li4Ti5O12 for high power lithium ion battery applications, Journal of Alloys and Compounds, 570 (2013) 144-149.
[21] A.S. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J.M. Tarascon, A.K. Shukla, Solution-combustion synthesized nanocrystalline Li4Ti5O12 as high-rate performance Li-ion battery anode, Chemistry of Materials, 22 (2010) 2857-2863.
[22] X. Guo, C. Wang, M. Chen, A novel non-organic hydrothermal/hydrolysis method for preparation of well-dispersed Li4Ti5O12, Materials Letters, 83 (2012) 39-41.
[23] C.-Y. Lin, J.-G. Duh, Porous Li4Ti5O12 anode material synthesized by one-step solid state method for electrochemical properties enhancement, Journal of Alloys and Compounds, 509 (2011) 3682-3685.
[24] J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage, Adv Mater, 24 (2012) 5166-5180.
[25] 林美雲, 使用LiMn2O4系正極材料的鋰離子二次電池, 工業材料, 145 (1999).
[26] E. Ferg, R.J. Gummow, A. de Kock, M.M. Thackeray, Spinel anodes for lithium-ion batteries, Journal of The Electrochemical Society, 141 (1994) L147.
[27] Y.H. Rho, K. Kanamura, M. Fujisaki, J.I. Hamagami, S.I. Suda, T. Umegaki, Preparation of Li4Ti5O12 and LiCoO2 thin film electrodes from precursors obtained by sol-gel method, Solid State Ionics, 151 (2002) 151-157.
[28] G. Yan, H. Fang, H. Zhao, G. Li, Y. Yang, L. Li, Ball milling-assisted sol-gel route to Li4Ti5O12 and its electrochemical properties, Journal of Alloys and Compounds, 470 (2009) 544-547.
[29] J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chemistry of Materials, 22 (2010) 587-603.
[30] D.Q. Liu, X.Q. Liu, Z.Z. He, The elevated temperature performance of LiMn2O4 coated with Li4Ti5O12 for lithium ion battery, Materials Chemistry and Physics, 105 (2007) 362-366.
[31] A.K. Padhi, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, Journal of The Electrochemical Society, 144 (1997) 1188.
[32] C. Delmas, J.J. Braconnier, P. Hagenmuller, A new variety of LiCoO2 with an unusual oxygen packing obtained by exchange reaction, Materials Research Bulletin, 17 (1982) 117-123.
[33] J. Molenda, Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties, Solid State Ionics, 36 (1989) 53-58.
[34] S. Passerini, The intercalation of lithium in nickel oxide and its electrochromic properties, Journal of The Electrochemical Society, 137 (1990) 3297.
[35] J. Dahn, Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure, Solid State Ionics, 44 (1990) 87-97.
[36] D. Aurbach, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions, Solid State Ionics, 148 (2002) 405-416.
[37] N. Munichandraiah, L.G. Scanlon, R.A. Marsh, Surface films of lithium: an overview of electrochemical studies, Journal of Power Sources, 72 (1998) 203-210.
[38] E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-The solid electrolyte interphase model, Journal of The Electrochemical Society, 126 (1979) 2047.
[39] F. Leroux, K. Méténier, S. Gautier, E. Frackowiak, S. Bonnamy, F. Béguin, Electrochemical insertion of lithium in catalytic multi-walled carbon nanotubes, Journal of Power Sources, 81-82 (1999) 317-322.
[40] A. Yoshino, Niji denchi zairyo kono 10-nen to kongo, Shiemushi, Tokyo, 2003.
[41] R. Marchand, L. Brohan, M. Tournoux, TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17, Materials Research Bulletin, 15 (1980) 1129-1133.
[42] G. Nuspl, K. Yoshizawa, T. Yamabe, Lithium intercalation in TiO2 modifications, Journal of Materials Chemistry, 7 (1997) 2529-2536.
[43] D.T. Cromer, K. Herrington, The Structures of Anatase and Rutile, Journal of the American Chemical Society, 77 (1955) 4708-4709.
[44] B. Zachauchristiansen, Lithium insertion in different TiO2 modifications, Solid State Ionics, 28-30 (1988) 1176-1182.
[45] A. Stashans, S. Lunell, R. Bergström, A. Hagfeldt, S.E. Lindquist, Theoretical study of lithium intercalation in rutile and anatase, Physical Review B, 53 (1996) 159-170.
[46] A.R. Armstrong, G. Armstrong, J. Canales, P.G. Bruce, TiO2-B nanowires, Angew Chem Int Ed Engl, 43 (2004) 2286-2288.
[47] M. Zukalová, M. Kalbáč, L. Kavan, I. Exnar, M. Graetzel, Pseudocapacitive lithium storage in TiO2(B), Chemistry of Materials, 17 (2005) 1248-1255.
[48] A.R. Armstrong, G. Armstrong, J. Canales, R. Garcia, P.G. Bruce, Lithium-ion intercalation into TiO2-B nanowires, Advanced Materials, 17 (2005) 862-865.
[49] D.S. Kommireddy, S.M. Sriram, Y.M. Lvov, D.K. Mills, Stem cell attachment to layer-by-layer assembled TiO2 nanoparticle thin films, Biomaterials, 27 (2006) 4296-4303.
[50] Jillian F. Banfield, D.R. Veblen, The structure and origin of Fe-bearing platelets in metamorphic rutile, American Mineralogis, 76 (1991) 113-127.
[51] D. Murphy, R. Cava, S. Zahurak, A. Santoro, Ternary LixTiO2 phases from insertion reactions, Solid State Ionics, 9-10 (1983) 413-417.
[52] J.A. Mergos, C.T. Dervos, Structural and dielectric properties of Li2O-doped TiO2, Materials Characterization, 60 (2009) 848-857.
[53] X. Sun, P.V. Radovanovic, B. Cui, Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries, New J. Chem., 39 (2015) 38-63.
[54] M. Wagemaker, D.R. Simon, E.M. Kelder, J. Schoonman, C. Ringpfeil, U. Haake, D. Lutzenkirchen-Hecht, R. Frahm, F.M. Mulder, A kinetic two-phase and equilibrium solid solution in spinel Li4+xTi5O12, Advanced Materials, 18 (2006) 3169-3173.
[55] M. Wagemaker, A. Van Der Ven, D. Morgan, G. Ceder, F.M. Mulder, G.J. Kearley, Thermodynamics of spinel LixTiO2 from first principles, Chemical Physics, 317 (2005) 130-136.
[56] W.J. Borghols, M. Wagemaker, U. Lafont, E.M. Kelder, F.M. Mulder, Size effects in the Li4+xTi5O12 spinel, J Am Chem Soc, 131 (2009) 17786-17792.
[57] T.F. Yi, Y. Xie, Y.R. Zhu, R.S. Zhu, H. Shen, Structural and thermodynamic stability of Li4Ti5O12 anode material for lithium-ion battery, Journal of Power Sources, 222 (2013) 448-454.
[58] C.Y. Ouyang, Z.Y. Zhong, M.S. Lei, Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel, Electrochemistry Communications, 9 (2007) 1107-1112.
[59] J.H. Kim, S.W. Song, H.V. Hoang, C.H. Doh, D.W. Kim, Study on the cycling performance of Li4Ti5O12 electrode in the ionic liquid electrolytes containing an additive, Bulletin of the Korean Chemical Society, 32 (2011) 105-108.
[60] B. Tian, H. Xiang, L. Zhang, H. Wang, Effect of Nb-doping on electrochemical stability of Li4Ti5O12 discharged to 0 V, Journal of Solid State Electrochemistry, 16 (2011) 205-211.
[61] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Titania nanotubes prepared by chemical processing, Advanced Materials, 11 (1999) 1307-1311.
[62] G. Xiang, T. Li, J. Zhuang, X. Wang, Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties, Chem Commun (Camb), 46 (2010) 6801-6803.
[63] M.G. Choi, Y.G. Lee, S.W. Song, K.M. Kim, Lithium-ion battery anode properties of TiO2 nanotubes prepared by the hydrothermal synthesis of mixed (anatase and rutile) particles, Electrochimica Acta, 55 (2010) 5975-5983.
[64] D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes, Journal of Materials Chemistry, 14 (2004) 3370.
[65] Z. Chang, J. Liu, J. Liu, X. Sun, Titanate nanosheets and nanotubes: alkalinity manipulated synthesis and catalyst support application, J. Mater. Chem., 21 (2011) 277-282.
[66] N. Masaki, S. Uchida, H. Yamane, T. Sato, Characterization of a new potassium titanate, KTiO2(OH) synthesized via hydrothermal method, Chemistry of Materials, 14 (2002) 419-424.
[67] M. Wei, Y. Konishi, H. Zhou, H. Sugihara, H. Arakawa, Formation of nanotubes TiO2 from layered titanate particles by a soft chemical process, Solid State Communications, 133 (2005) 493-497.
[68] V. Subramanian, A. Karki, K.I. Gnanasekar, F.P. Eddy, B. Rambabu, Nanocrystalline TiO2 (anatase) for Li-ion batteries, Journal of Power Sources, 159 (2006) 186-192.
[69] G. Armstrong, A.R. Armstrong, J.s. Canales, P.G. Bruce, TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries, Electrochemical and Solid-State Letters, 9 (2006) A139.
[70] H. Zhang, G.R. Li, L.P. An, T.Y. Yan, X.P. Gao, H.Y. Zhu, Electrochemical lithium storage of titanate and titania nanotubes and nanorods, The Journal of Physical Chemistry C, 111 (2007) 6143-6148.
[71] S. Dong, H. Wang, L. Gu, X. Zhou, Z. Liu, P. Han, Y. Wang, X. Chen, G. Cui, L. Chen, Rutile TiO2 nanorod arrays directly grown on Ti foil substrates towards lithium-ion micro-batteries, Thin Solid Films, 519 (2011) 5978-5982.
[72] N. Li, A high-rate, high-capacity, nanostructured tin oxide electrode, Electrochemical and Solid-State Letters, 3 (1999) 316.
[73] H. Shi, Structure and lithium intercalation properties of synthetic and natural graphite, Journal of The Electrochemical Society, 143 (1996) 3466.
[74] N. Cai, J. Cho, Low temperature processed SnO2 films using aqueous precursor solutions, Ceramics International, 39 (2013) 143-151.
[75] J.S. Chen, Y.L. Cheah, Y.T. Chen, N. Jayaprakash, S. Madhavi, Y.H. Yang, X.W. Lou, SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries, The Journal of Physical Chemistry C, 113 (2009) 20504-20508.
[76] S.M. Paek, E. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Lett, 9 (2009) 72-75.
[77] J.S. Chen, L.A. Archer, X. Wen Lou, SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries, Journal of Materials Chemistry, 21 (2011) 9912.
[78] Z. Wang, J.S. Chen, T. Zhu, S. Madhavi, X.W. Lou, One-pot synthesis of uniform carbon-coated MoO2 nanospheres for high-rate reversible lithium storage, Chem Commun (Camb), 46 (2010) 6906-6908.
[79] Y. Wang, J. Yang Lee, Preparation of SnO2-graphite nanocomposite anodes by urea-mediated hydrolysis, Electrochemistry Communications, 5 (2003) 292-296.
[80] Y.-M. Lin, R.K. Nagarale, K.C. Klavetter, A. Heller, C.B. Mullins, SnO2 and TiO2-supported-SnO2 lithium battery anodes with improved electrochemical performance, Journal of Materials Chemistry, 22 (2012) 11134.
[81] X. Hou, X. Wang, B. Liu, Q. Wang, Z. Wang, D. Chen, G. Shen, SnO2@TiO2 heterojunction nanostructures for lithium-ion batteries and self-powered UV photodetectors with improved performances, ChemElectroChem, 1 (2014) 108-115.
[82] Z. Yang, G. Du, Z. Guo, X. Yu, Z. Chen, T. Guo, R. Zeng, Encapsulation of TiO2(B) nanowire cores into SnO2/carbon nanoparticle shells and their high performance in lithium storage, Nanoscale, 3 (2011) 4440-4447.
[83] Z. Yang, G. Du, Q. Meng, Z. Guo, X. Yu, Z. Chen, T. Guo, R. Zeng, Dispersion of SnO2 nanocrystals on TiO2(B) nanowires as anode material for lithium ion battery applications, RSC Advances, 1 (2011) 1834.
[84] L. Kavan, M. Kalbáč, M. Zukalová, I. Exnar, V. Lorenzen, R. Nesper, M. Graetzel, Lithium storage in nanostructured TiO2 made by hydrothermal growth, Chemistry of Materials, 16 (2004) 477-485.
[85] Y. Zhou, C. Jo, J. Lee, C.W. Lee, G. Qao, S. Yoon, Development of novel mesoporous C-TiO2-SnO2 nanocomposites and their application to anode materials in lithium ion secondary batteries, Microporous and Mesoporous Materials, 151 (2012) 172-179.
[86] X.W. Lou, C.M. Li, L.A. Archer, Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage, Advanced Materials, 21 (2009) 2536-2539.
[87] N. Li, C.R. Martin, A high-rate, high-capacity, nanostructured Sn-based anode prepared using sol-gel template synthesis, Journal of The Electrochemical Society, 148 (2001).
[88] X.M. Yin, C.C. Li, M. Zhang, Q.Y. Hao, S. Liu, L.B. Chen, T.H. Wang, One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries, Journal of Physical Chemistry C, 114 (2010).
[89] J. Hassoun, G. Derrien, S. Panero, B. Scrosati, A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance, Advanced Materials, 20 (2008) 3169-3175.
[90] M.M. Thackeray, Structural considerations of layered and spinel lithiated oxides for lithium ion batteries, Journal of The Electrochemical Society, 142 (1995) 2558.
[91] K. Zaghib, Electrochemistry of anodes in solid-state Li-ion polymer batteries, Journal of The Electrochemical Society, 145 (1998) 3135.
[92] K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries, Journal of Power Sources, 81-82 (1999) 300-305.
[93] J. Gao, C. Jiang, J. Ying, C. Wan, Preparation and characterization of high-density spherical Li4Ti5O12 anode material for lithium secondary batteries, Journal of Power Sources, 155 (2006) 364-367.
[94] S.Y. Yin, L. Song, X.Y. Wang, M.F. Zhang, K.L. Zhang, Y.X. Zhang, Synthesis of spinel Li4Ti5O12 anode material by a modified rheological phase reaction, Electrochimica Acta, 54 (2009) 5629-5633.
[95] Y.J. Hao, Q.Y. Lai, J.Z. Lu, H.L. Wang, Y.D. Chen, X.Y. Ji, Synthesis and characterization of spinel Li4Ti5O12 anode material by oxalic acid-assisted sol-gel method, Journal of Power Sources, 158 (2006) 1358-1364.
[96] J.L. Allen, T.R. Jow, J. Wolfenstine, Low temperature performance of nanophase Li4Ti5O12, Journal of Power Sources, 159 (2006) 1340-1345.
[97] M. Venkateswarlu, C.H. Chen, J.S. Do, C.W. Lin, T.C. Chou, B.J. Hwang, Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol-gel process and characterized by X-ray absorption spectroscopy, Journal of Power Sources, 146 (2005) 204-208.
[98] P.E. Lippens, M. Womes, P. Kubiak, J.C. Jumas, J. Olivier-Fourcade, Electronic structure of the spinel Li4Ti5O12 studied by ab initio calculations and X-ray absorption spectroscopy, Solid State Sciences, 6 (2004) 161-166.
[99] P. Kubiak, A. Garcia, M. Womes, L. Aldon, J. Olivier-Fourcade, P.E. Lippens, J.C. Jumas, Phase transition in the spinel Li4Ti5O12 induced by lithium insertion: Influence of the substitutions Ti/V, Ti/Mn, Ti/Fe, Journal of Power Sources, 119-121 (2003) 626-630.
[100] M. Sacerdoti, M.C. Dalconi, M.C. Carotta, B. Cavicchi, M. Ferroni, S. Colonna, M.L.D. Vona, XAS investigation of tantalum and niobium in nanostructured TiO2 anatase, Journal of Solid State Chemistry, 177 (2004) 1781-1788.
校內:2021-01-30公開