簡易檢索 / 詳目顯示

研究生: 陳威廷
Chen, Wei-Ting
論文名稱: 藉由多光子激發光化學反應於微光學透鏡之製作
Fabrication of Microlens by Multiphoton Excitation Photochemistry
指導教授: 陳顯禎
Chen, Shean-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 41
中文關鍵詞: 飛秒雷射多光子激發多光子製作交聯反應微透鏡
外文關鍵詞: femtosecond laser, multiphoton excitation, multiphoton fabrication, crosslinking, microlens
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,主要藉由飛秒雷射系統結合非線性光學之多光子激發效應(multiphoton excitation)的技術來進行微透鏡之製作。由於多光子激發效應能將有效激發區域侷限於一極小的體積之中,因此可用於高精緻三維結構的製作。首先藉由繪圖軟體設計微透鏡的直徑、高度、曲率等參數,並計算理論數值孔徑(numerical aperture,NA)、焦距以及微透鏡最佳聚焦點的大小。實驗過程中,分別使用三種材料來進行微透鏡製作之實驗。第一種配方使用光學樹脂Norland Optical Adhesive 81作為加工材料,透過光聚合反應,製作4×4的微透鏡陣列。第二種配方使用蛋白質材料,牛血清蛋白(bovine serum albumin,BSA),透過交聯反應機制製作微透鏡。第三種配方以BSA作為支撐結構的材料並摻雜少許石墨烯量子點(graphene oxide quantum dots,GOQDs)製作微透鏡。為了檢驗加工出來的透鏡品質,初步透過掃描式電子顯微鏡(scanning electron microscope)檢視表面形貌並透過物鏡嘗試將微透鏡之聚焦點影像成像於感光耦合元件(charged-coupled device)上。從檢測結果顯示,BSA以及BSA摻雜GOQDs的實驗結果,其表面都有些許孔洞存在,若要用於微透鏡製作較不適合。以上述光學樹脂製作之透鏡,其表面緻密程度優於BSA配方和BSA摻雜GOQDs配方,光線在透鏡內部傳播較不會受到孔洞所造成的散射影響,在微透鏡的製作上相對較為理想。

    In this thesis, using the femtosecond laser microfabrication system via a nonlinear optical effect called multi-photon excitation (MPE), a microlens can be fabricated. Owing to the fact that the excitation region can be confined to a tiny focal volume, sophisticated three-dimensional structures can be realized through MPE. In the thesis, the diameter, height and curvature of the microlens (plano-convex) are designed using drawing software. Furthermore, the theoretical numerical aperture (NA), focal length and focusing size of the microlenses were computed. In the study, three kinds of materials were used for microlens fabrication. In the first formulation, a 4×4 microlens array was fabricated using the optical resin, Norland Optical Adhesive 81, through photo-polymerization. In the second formulation, microlenses were processed using a protein, bovine serum albumin (BSA), through the crosslinking mechanism. In the third formulation, the BSA-dominant structure doped with the graphene oxide quantum dots (GOQDs) was tested tentatively. In order to check the morphology and focusing quality of the fabricated microlens, the morphology of the fabricated microlens was observed using a scanning electron microscope, and the focusing spot was imaged on the charged-couple device via an objective. According to the results of the experiment, the consequences of BSA and BSA doped with GOQDs lead to some porous holes on the surface. This means that these two materials are not really suitable in microlens fabrication. The surface of the optical resin based microlens is more compact than the two other materials. When the light passes through the medium of the optical resin based material, the optical path is thus less affected by scattering due to the porous morphology. Therefore, an optical resin based material is relatively ideal in the production of a microlens.

    Abstract I 摘要 III 誌謝 V Contents VII List of Figures IX Abbreviation XI Chapter 1 Introduction 1 1.1 Preface 1 1.2 Motivation 2 1.3 Outlines 3 Chapter 2 Multiphoton Microfabrication Mechanism and Femtosecond Laser Writing System 5 2.1 Multi-photon Mechanism 5 2.2 Fabrication Concepts Illustration 9 2.3 3D Freeform Modeling and Transformation 15 2.4 Laser System Setup 16 2.5 Dispersion Compensation 19 Chapter 3 Optical Adhesive and Bovine Serum Albumin Microlens Arrays Fabrication 25 3.1 Microlens Arrays Design 25 3.2 NOA81 Preparation, Fabrication and Demonstration 26 3.2 BSA Preparation, Fabrication and Demonstration 28 Chapter 4 Graphene Oxide Quantum Dots-based Microlens Fabrication 31 4.1 Function of BSA in the Fabrication Process 31 4.2 GOQDs-doped in microlens Fabrication and Development 32 Chapter 5 Conclusions and Future Works 35 References 38

    [1] H. B. Sun, T. Kawakami, Y. Su, J. Y. Yeh, S. Matuso, H. Misawa, M. Miwa, and R. Kaneko, “Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption,” Opt. Lett. 25, 1110-1112 (2000).
    [2] S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697-698 (2001).
    [3] S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132-134 (1997).
    [4] M. G. Mayer, “U ̈ber elementarakte mit zwei quantenspru ̈ngen,” Annals of Physics. 9(3), 273-95 (1931).
    [5] M. Farsari and B. N. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics 3, 450-452 (2009).
    [6] T. Baldacchini, Three-dimensional microfabrication using two-photon polymerization, 1st ed., William Andrew, Waltham, MA (2015).
    [7] T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554-560 (2016).
    [8] M. H. Tong, N. Huang, W. Zhang, Z. L. Zhou, A. H. W. Ngan, Y. Du, and B. P. Chan, “Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements,” Sci. Rep. 6, 20063 (2016).
    [9] Y. L. Sun, Z. S. Hou, S. M. Sun, B. Y. Zheng, J. F. Ku, W. F. Dong, Q. D. Chen, and H. B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
    [10] Y.-D. Sie, Y.-C. Li, N.-S. Chang, P. J. Campagnola, and S.-J. Chen, “Fabrication of three-dimensional multi-protein microstructures for cell migration and adhesion enhancement,” Biomed. Opt. Express 6, 480-490 (2015).
    [11] A. Marchinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277-279 (2001).
    [12] P. W. Wu, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12, 1438-1441 (2000).
    [13] Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5, 1144-1148 (2009).
    [14] N. Takeshima, Y. Narita, T. Nagata, S. Tanaka, and K. Hirao, “Fabrication of photonic crystals in ZnS-doped glass,” Opt. Lett. 30, 537-539 (2005).
    [15] G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett. 31, 2783-2785 (2006).
    [16] Z. B. Sun, X. Z. Dong, S. Nakannishi, W. Q. Chen, X. M. Duan, and S. Kawata, “Log-pile photonic crystal of CdS-polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis,” Appl. Phys. A 86, 427-431 (2007).
    [17] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442, 282-286 (2006).
    [18] Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H. B. Sun, and F. S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5, 15-20 (2010).
    [19] G. Kalita, L. Qi, Y. Namba, K. Wakita, and M. Umeno, “Femtosecond laser induced micropatterning of graphene film,” Mater. Lett. 65, 1569-1572 (2011).
    [20] L. Huang, Y. Liu, L. C. Ji, Y. Q. Xie, T. Wang, and W. Z. Shi, “Pulsed laser assisted reduction of graphene oxide,” Carbon 49, 2431-2436 (2011).
    [21] K. V. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666-669 (2004).
    [22] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197-200 (2005).
    [23] X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6, 8433 (2015).
    [24] A. M. Packer, B. Roska, and M. Ha ̈usser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16, 805-815 (2013).
    [25] W.-S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C.-Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18, 27550-27559 (2010).
    [26] N. Anderson, L. Wang, and T. Erdogan, Ion-Beam-Sputtered Coatings for Ultrafast Lasers and Applications, Semrock, Inc.
    [27] B. J. Guild, C. Xu, and W. W. Webb, “Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence,” Appl. Opt. 36, 397-401 (1997).
    [28] C. L. Lay, Y. H. Lee, M. R. Lee, I. Y. Phang, and X. Y. Ling, “Formulating an Ideal Protein Photoresist for Fabricating Dynamic Microstructures with High Aspect Ratios and Uniform Responsiveness,” ACS Appl. Mater. Interfaces 8, 8145-8153 (2016).
    [29] S. Ahadian, M. Estili, V. J. Surya, R. A. Javier, X. Liang, H. Shiku, M. Ramalingam, T. Matsue, Y. Sakka, H. Bae, K. Nakajima, Y. Kawazoe, and A. Khademhosseini, “Facile and green production of aqueous graphene dispersions for biomedical applications,” Nanoscale 7, 6436-6443 (2015).
    [30] H.-Y. Chang, C.-Y. Lin, C.-Y. Chang, H. Teng, P. J. Campagnola, and S.-J. Chen, “Graphene oxide dot-based microstructures via dispersion and support of bovine serum albumin,” Opt. Mater. Express 6, 3193-3201 (2016).
    [31] Y. Xu, K. Sheng, C. Li, and G. Shi, “Self-assembled graphene hydrogel via a one-step hydrothermal process,” ACS Nano 4, 4324-4330 (2010).

    無法下載圖示 校內:2022-10-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE