簡易檢索 / 詳目顯示

研究生: 吳榮聰
Wu, Jung-Tsung
論文名稱: 消費者於網購平台購買抗藍光眼鏡之關鍵因素探討
The Key Factors that Affect Consumers Purchase Anti-blue Ray Grasses Using Online Shopping Platforms
指導教授: 康信鴻
Kang, Hsin-Hong
共同指導教授: 莊雙喜
Chuang, Shuang-Shii
學位類別: 碩士
Master
系所名稱: 管理學院 - 高階管理碩士在職專班(EMBA)
Executive Master of Business Administration (EMBA)
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 55
中文關鍵詞: 抗藍光眼鏡線性機率模型購買意願
外文關鍵詞: Anti-blue ray glasses, Linear probability model, Purchasing intention
相關次數: 點閱:121下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著智慧型手機、平板電腦以及行動網路的普及與流行,使得人們使用3C產品的時間也隨之增加。平均每個使用者每天盯看智慧型手持裝置螢幕的時間超過1小時,但是眼睛是靈魂之窗,過度使用3C產品會對於視力產生不良影響。根據相關研究,許多3C產品,包括平板顯示器、LED霓虹燈、螢光燈、電腦顯示器、手機螢幕等,所發出之背景光源皆含有異常的高能藍光。而這種高能藍光會對視網膜產生傷害,造成眼睛疲勞、乾澀、痠痛等困擾。長期下來將引發相關眼部疾病,主要包括像是黃斑部病變、白內障惡化等,因此市面上出現了許多以抗藍光為主軸的保健眼鏡。然而消費者對於眼鏡的需求從過去看重功能性的情況,近年來轉變為重視外觀、流行感的需求。因此對於製造抗藍光眼鏡之廠商而言,如何利用網路熱潮以及考量消費者需求來拓展市占率則成為主要目標。所以,本研究方法利用線性機率模型(Linear Probability Model),探討消費者在購買抗藍光眼鏡時,有哪些影響購買意願的因素,並依結果提出建議。本研究針對網路及3C產品使用者,共發出400份調查問卷,並回收305份有效問卷。透過SPSS統計軟體分析得出研究結果,顯示在p=0.01顯著水準之下,產品外觀因素、眼科醫師因素以及3C產品使用習慣因素等,對於是否購買抗藍光眼鏡會有顯著影響。因此本研究建議相關產品需考量流行元素,同時與專科醫師合作推廣。另外,研究也發現不同年齡層以及每週不同的3C使用時間也會影響消費者購買抗藍光眼鏡的意願,因此建議廠商可以針對不同消費族群推出不同的行銷方式來應變。
    關鍵字:抗藍光眼鏡、線性機率模型、購買意願

    Extended Abstract
    The Key Factors that Affect Consumers Purchase Anti-blue Ray Glasses Using Online Shopping Platforms
    Author's Name:Wu, Jung-Tsung
    Advisor's Name:Kang, Hsin-Hong
    Chuang, Shuang-Shii
    Executive Master of Business Administration of National Cheng Kung University

    SUMMARY
    With the popularity of the smart phones, tablet PCs, and the mobile network, the use time of the 3C products are quickly increased. The average time of each user to stare at the screen is more than 1hour per day. It will bring the undesirable effect to our eyes. According to research, most of the background light in 3C products including flat panel displays, LED neon lights, fluorescent lamps, computer monitors, and mobile phone screens emit the high-energy blue ray. This high-energy blue ray may harm the retina and cause eye fatigue, dryness, pain and other problems. Therefore, the corresponding product of anti-blue ray glasses is provided and which claims that can protect from the damage of the blue ray. Compared with the functionality of the product, the consumers are better concerned the appearance of the product in recently. How to expand the market share in the anti-blue ray glasses market by using the mobile network and considering the favorites of the consumers is the first priority to the anti-blue ray manufactures. For this reason, this study adopts the Linear Probability Model to analyze the critical factors of the purchase intention when consumers buy anti-blue glasses. 400 copies of the questionnaires are launched and return 305 valid copies. The results show that the appearance factor, the ophthalmologist factor and the habit of the 3C product usage factor have significant effect to the purchasing intention of the anti-blue ray glasses under the significant level of p = 0.01. We also find that different age and different 3C use time will influence too.
    Keywords: Anti-blue ray glasses, Linear probability model, Purchasing intention

    INTRODUCTION
    The study wants to realize the critical factors for consumer to purchase the anti-blue ray glasses. With the increasing notice in sight health protection, the purchasing intention of the consumers in buying the anti-blue ray glasses should be taken account of. On the other hand, the great progress in mobile network brings the new business opportunity for anti-blue glasses market. Therefore, the purpose of this thesis is to find out in what reason that the consumer will buy the anti-blue ray glasses and whether the consumers will buy the anti-blue glasses through the network transaction platform by giving the questionnaire. According to this research conclusion, we can realize the important factor for consumer to making a purchasing decision.

    MATERIAL AND METHODS
    Linear probability model can be used to handle the binary question. The result of consumer to make a buying decision can be divided into two scenarios: one is buying and the other is not buying. This is a classical binary classification problem. The linear probability model can be used to handle the binary classification problem and performs a satisfactory job in this task. The linear probability model of our study was represented as follows:
    Y=a_1 x_1+a_2 x_2+a_3 x_3+a_4 x_4+a_5 x_5+a_6 x_6+a_7 x_7+a_8 x_8+a_9 x_9+a_10 x_10+a_11 x_11+a_12 x_12+a_13 D_1+a_14 D_2+a_15 D_3+a_16 D_4+a_17 D_5+a_18 D_6+ε

    RESULTS AND DISCUSSION
    The network transaction platform and other consumer related factors may affect the choice of buying anti-blue ray glasses, this research take general network consumer as the research object and issue 400 questionnaires. By deleting the invalid samples, the valid questionnaires are 305 copies. This study performs a linear probability model to deal with our research issues. The result is shown in Table 1, and the hypothesis 6, the hypothesis 8, and the hypothesis 12 are significant under the 0.01 p-value level. As the result, we can find that the appearance factor, the ophthalmologist factor and the habit of the 3C product usage factor will significantly influence the decision of buying anti-blue ray glasses. As to the dummy variables (Table 2), the result shows that the age under 30 is more significant than the age between 30 and 50. It means that the younger the consumer is the more possibility that he/she buy the anti-blue ray glasses. The result also shows that the 3C use time under 2 hours is more significant than the time over 6 hours. And this evident identifies that the longer the users use their smart device the less they care able their eyes.

    Table 1. The result of the study
    Variable Coefficient t-Statistic Prob.
    X1 -0.042 -0.719 0.473
    X2 -0.121 -1.818 0.07*
    X3 -0.137 -2.167 0.031**
    X4 0.041 0.691 0.49
    X5 0.159 2.461 0.014**
    X6 0.153 2.777 0.006***
    X7 -0.002 -0.036 0.971
    X8 0.202 2.74 0.007***
    X9 -0.173 -0.2.435 0.016**
    X10 -0.038 -0.469 0.64
    X11 -0.097 -1.391 0.165
    X12 -0.219 -3.133 0.002***
    ***(P <0. 01)

    Table 2. Dummy Variables
    Variable Coefficient t-Statistic Prob.
    D1 0.211 3.237 0.001***
    D2 -0.144 -2.469 0.014**
    D3 -0.089 -1.497 0.136
    D4 0.037 0.519 0.604
    D5 0.425 6.72 0.000***
    D6 -0.009 -0.162 0.872
    ***(P <0. 01)

    CONCLUSION
    According our finding, we can see that the product appearance have a great effect to the consumers when purchase the anti-blue ray glasses. This is because that the consumer not only takes the anti-blue ray glasses as a health protection product but also a fashion adornment. Also, the recommendation of the ophthalmologist will enhance the purchasing intention. With the specialized recommendation, the consumers will have a better confidence in this product. Finally, the consumers who have the habit of the using 3C product will are intended not to buy the anti-blue ray product because of their habitual 3C using behavior. The more they are used to using the 3C product, the more they disregard the damage which is brought by the blue ray.

    目錄 中文摘要 i Extended Abstracts ii 誌謝 v 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機與目的 4 第三節 研究流程 5 第二章 文獻探討 6 第一節 消費者行為模式 6 一、訊息輸入 7 二、資訊處理 7 三、決策過程 8 四、決策過程變數 9 第二節 產品屬性 10 一、品牌 11 二、價格 12 三、口碑 14 第三節 網路購物行為 16 一、網路購物 16 二、消費者採用網路購物之探討 18 第四節 本研究努力方向 21 第三章 研究方法與假說 22 第一節 研究方法與變數說明 22 第二節 假說設立 24 第四章 實證結果與分析 33 第一節 樣本資料 33 第二節 信效度分析 35 第三節 分析結果 38 第五章 結論與建議 41 第一節 研究結論與策略建議 41 第二節 未來研究建議 45 第三節 實務心得 45 參考文獻 49 附錄A 53   表目錄 表1、抗藍光眼鏡分類 2 表2、變數說明表 23 表3、研究假說與問卷對照表 31 表4-1 基本屬性各變項之分布 34 表4-2 效度分析 35 表4-3 信度分析 36 表4-4 線性機率模型的廻歸模型結果 38 表4-5 統計顯著表 39 表5-1 研究假說檢定結果 42 表5-2 虛擬變數檢定結果 42 表5-3 各品牌抗藍光眼鏡透光率比較 47   圖目錄 圖1、 研究流程 5 圖2、 研究架構 24  

    參考文獻
    英文文獻
    Alba, Joseph, John Lynch, Barton Weitz, Chris Janiszewski, Richard Lutz, Alan Sawyer & Stacy Wood, (1997). “Interactive Home Shopping: Consumer, Retailer, and Manufacture Incentives to Participate in Electronic Marketplace,” Journal of Marketing, 61(3), 38-53.
    Boyd, T. C., & Mason, C. H. (1999). The link between attractiveness of “extrabrand” attributes and the adoption of innovations. Journal of the Academy of Marketing Science, 27(3), 306-319.
    Brown, J.J., &Reingen, P.H. (1987). Social ties and word-of-mouth referral behavior. Journal of Consumer research, 14(3), 350-362.
    Chu, J., & Morrison, G. P. (2007). Enhancing the customer shopping experience: 2002 IBM/NRF'Store of the Future"'survey. Accessed on, 01-04.
    David L. Loudon, Albert J. Della Bitta. (1988).Consumer Behavior: Concepts and Applications(3rd ed.)McGraw-Hill, New York
    Engel, J. F., Blackwell, RogerD., and Kollat, DavidT. (1978), Consumer Behavior, 3rd edn., Hinsdale, IL: Dryden Press.
    Engel, J. F., D. T. Kollat and R. D. Blackwell. (1968), Consumer Behavior, New York: Holt, Rinehart & Winston.
    Engel, J.F., Blackwell, R.D.& Miniard, P.W. (1995), Consumer Behavior,7th ed., Fort Worth, Dryden Press, 53.
    Gilly, Mary C. ,John L. Graham, Mary Finley Wolfinbarger , and Laura J. Yale. (1998) “A Dyadic Study of Interpersonal Information Search ,“ Journal of the Academy of Marketing Science , 26(2), 83-100
    Guiltinan, J. P. (1999). Launch strategy, launch tactics, and demand outcomes. Journal of Product Innovation Management, 16(6), 509-529.
    Henderson, R., Rickwood, D., & Roberts, P. (1998). The beta test of an electronic supermarket. Interacting with Computers, 10(4), 385-399.
    Herr, P. M., Kardes, F. R., & Kim, J. (1991). Effects of word-of-mouth and product-attribute information on persuasion: An accessibility-diagnosticity perspective. Journal of consumer research, 17(4)454-462.
    Hoffman, D. L. and T. P. Novak. (1996). “Marketing in Hypermedia Computer- Mediated Environments: Conceptual foundations” Journal of Marketing, 60(3), 50-68.

    Holak, Susan L. and donald R. Lehmann. (1990). “Purchase Intentions and the Dimensions of Innovation: an Exploratory Model “Journal of Product Innovation Management ,7(1), 59-73.
    Jordan, P. W. Designing pleasurable products. (2000). An introduction to the new human.
    Kardes, Frank R. ,Gurumurthy Kalyanaram ,Murake Chandrashekaran, and Ronald J.Dornoff, (1993).”Brand Retrieval, Consideration set Composition, Consumer Choice, and the Pioneering Advantage,” Journal of Consumer Research, 20(1), 62-75.
    Kiang, M. Y., Raghu, T. S., & Shang, K. H. M. (2000). Marketing on the Internet—who can benefit from an online marketing approach?. Decision Support Systems, 27(4), 383-393.
    Kim, J., & Moon, J. (1998). Designing towards emotional usability in customer Interfaces-trustworthiness of cyber-banking system interfaces. Interacting with Computers 10, 1-29.
    Kotler, P. (1997). marketing management: Analysis, planning, implementation, and control, 9th ed.,NJ:Prentice-Hall
    Lefkoff-Hagius, R., & Mason, C. H. (1993). Characteristic, beneficial, and image attributes in consumer judgments of similarity and preference. Journal of Consumer Research, 100-110.
    Liang, T. P., & Huang, J. S. (1998). An empirical study on consumer acceptance of products in electronic markets: a transaction cost model.Decision support systems, 24(1), 29-43.
    Maslow, A. H. (1943). A theory of human motivation. Psychological review,50(4), 370-396.
    Midgley, D. F., & Dowling, G. R. (1993). A longitudinal study of product form innovation: The interaction between predispositions and social messages. Journal of Consumer Research, 19(4), 611-625.
    Mitra, A. (1995). Price cue utilization in product evaluations: the moderating role of motivation and attribute information. Journal of Business Research, 33(3), 187-195.
    Monroe, K. B., & Lee, A. Y. (1999). Remembering versus knowing: Issues in buyers’ processing of price information. Journal of the Academy of Marketing Science, 27(2), 207-225.
    Moorthy, S., Ratchford, B. T., & Talukdar, D. (1997). Consumer information search revisited: Theory and empirical analysis. Journal of consumer research, 23(4), 263-277.
    Muthukrishnan, A. V. (1995). Decision ambiguity and incumbent brand advantage. Journal of Consumer Research, 22(1), 98-109.
    Olshavsky, R. W., Aylesworth, A. B., & Kempf, D. S. (1995). The price-choice relationship: a contingent processing approach. Journal of Business Research,33(3), 207-218.
    Olson, J. C., & Reynolds, T. J. (2001). The means-end approach to understanding consumer decision making. Understanding consumer decision making: The means-end approach to marketing and advertising strategy, 3-20.
    Peterson, R. A., Balasubramanian, S., & Bronnenberg, B. J. (1997). Exploring the implications of the Internet for consumer marketing. Journal of the Academy of Marketing science, 25(4), 329-346.
    Schiffman, L.G. & Kanuk, L.L., (1997). “Consumer Behavior,” 6th ed. Upper Saddle River, NJ: Prentice Hall.
    Scitovszky, T. (1944). Some consequences of the habit of judging quality by price. The Review of Economic Studies, 12(2), 100-105.
    Smith, A. (1776). An inquiry into the wealth of nations. Strahan and Cadell, London.
    Stanton, W. E. J., and Etzel, M. J. (1991), Fundamentals of Marketing(9th ed., 168).New York, NY:McGraw-Hill.
    Veryzer, R. W. (1998). Discontinuous innovation and the new product development process. Journal of product innovation management, 15(4), 304-321.
    WHO, Global status report on noncommunicable diseases 2010
    Zarem, J. E. (2000). Experience marketing. Folio: The Magazine for Magazine Management, 1(3), 28-32.


    中文文獻
    方世榮. (1998). 行銷管理學: 分析, 計劃, 執行與控制. 台北: 東華.(Kotlor, P., 1997).
    王旭昇(2005)。《網路行銷理論與實務》。台北市:知城數位科技股份有限公司。
    何育秀(1999),影響消費者選擇電子商務購買決策因素之研究,中國文化大學國際企業管理所碩士學位論文。
    周樹林(2005/10/7 )。《2010 年美國電子商務破3,000 億美元》。資策會。
    東方線上2008年版E-ICP消費者行銷資料庫
    林珮雯(2004)。《電子商務網站介面設計研究-美感與使用性》。交通大學傳播研究所碩士論文。
    郭淑雲(2001)。《消費者特性與網際網路購物意願關係之研究--以生鮮食品為例》。國立中興大學行銷學系碩士論文。
    陳德請, 李錫霖, & 林漢傑. (2013). 攜帶型抗藍光鏡片量測裝置. 科儀新知, 197, 55-72.
    陳樺誼、周樹林(2005)。《2005 台灣網路使用者行為分析》。資策會。
    創市際網路調查,2008。
    資策會(2008),資訊服務產業年鑑,頁9-1~9-28
    鄭宇庭, 蔡紋琦, 謝邦昌, & 李佳玲. (2012). 應用商業智慧於眼鏡消費行為及市場需求. Journal of Data Analysis, 7(3), 121-137.
    鄭秋月(1998),女性服飾與屬性-價值階層之探討:以台北新世代女性為例,輔仁大學織品研究所碩士論文
    蕭銘雄, & 蔣惠蓮. (2005). 消費者特性, 網路企業特性, 產品特性, 以及網路環境特性對網路購物行為影響之研究. 資訊管理展望, 2, 71-90

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE