| 研究生: |
張書碩 Chang, Shu-Shuo |
|---|---|
| 論文名稱: |
溴化鋰吸濕脫水設備之系統設計 System Design of A Lithium-bromide Absorption Facility |
| 指導教授: |
邱政勳
Chiou, Jenq-Shing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 真空乾燥 、溴化鋰 、吸濕/脫汽系統 |
| 外文關鍵詞: | vacuum drying, lithium bromide, absorber/desorber system |
| 相關次數: | 點閱:74 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
真空乾燥是一種可於相對低溫運作的乾燥法,許多熱敏感性物料如食物、藥品或其他具生物活性的物質皆適用真空乾燥。此乾燥法在傳統上皆以真空幫浦來移除真空腔體內因乾燥過程而產生的水汽,但真空泵浦的運作相當耗能,而且容易連帶地將細小的乾成品排至大氣環境中,所以本團隊應用溴化鋰吸收式冷凍系統的原理,來設計一組溴化鋰吸濕及脫水系統,此系統可連續地在真空下吸收水汽,並可將所吸收的水汽排除至真空腔體外。
本團隊所建立的吸濕/排汽系統包括概念設計、軟體程式的模擬與分析、實驗設備的製作與組裝,以及吸濕/排汽功能的測試,而本文的重點在運用其中數值模擬的結果來設計實驗設備的幾何尺寸與材料選用,並確保腔體真空度的維持,來達到吸濕/排汽的連續性。
在輔助提升吸濕效能的實驗上,本研究以兩種不同的冷卻水排管(平滑管與鰭片管)進行吸濕實驗,實驗結果在總熱傳率上,鰭片管較平滑管提升了8%~35%;而總吸濕率方面,鰭片管則較平滑管提升了16%~21%。
Vacuum drying can be operated at a relatively low temperature and is one of a few drying methods which can be applied for drying the temperature-sensitive materials such as health foods, drugs and other bio-active materials. To maintain a low pressure inside the vacuum chamber, the vaporized steam is usually expelled out by a vacuum pump. Since the specific volume of vapor is very large (about 40000 times of liquid water), the operation energy for a pump is very energy intense. In addition, the very fine dried product may be entrained into the exhausted system flow and loss to (or contaminate) the environment. There for, our research team used the concept from lithium bromide absorption chiller to create an absorber/desorber system, which can continuously absorb the vaporized steam inside the vacuum chamber and desorbs it outside the chamber.
The construction of this absorber/desorber system includes conception design, system simulation and analysis by a computer code, manufacture and setup of a test facility and the functional test of absorption/desorption processes. In this thesis, the focuses are placed on the configuration design of experimented facility and the material selection for system components in order to maintain a low pressure environment inside the vacuum chamber and to achieve the continuity of absorption/desorption processes.
To assist in promoting the absorption capacity, the absorption tests carried out in this study used two different kinds of cooling tube; one without fin and the other with plat-fin connected vertically along a tube array. The test results indicated that the heat transfer rate and the vapor absorption rate of finned tube were respective about 8~35% and 16~21% higher than that of plain tube.
[1]國立清華大學,乾燥技術效率提升技術手冊,經濟部,2003。
[2]V. Mottonen, Variation in Drying Behavior and Final Moisture Content of Wood during Conventional Low Temperature Drying and Vacuum Drying of Betula Pendula Timber, Drying Technology, 24, pp. 1405-1413, 2006.
[3]X. J. Li, B. G. Zhang et al., Microwave-Vacuum Drying of Wood: Model Formulation and Verification, Drying Technology, 26, 1382-1387, 2008.
[4]W. Kaensup, S. Chutima et al, Experimental Study on Drying of Chilli in a Combined Microwave-Vacuum-Rotary Drum Dryer, Drying Technology, 20(10), 2067-2079, 2002.
[5]C. D. Clary, S. Wang et al., Fixed and Incremental of Microwave Power Application in Drying Grapes under Vacuum, Journal of Food Science, 70(5), 344-349, 2005.
[6]D. Setiady, C. Clary et al., Optimizing Drying Conditions for Microwave -Vacuum (MIVAC) Drying of Russet Potatoes (Solanum Tuberosum), Drying Technology, 25(9), 1483-1489, 2007.
[7]X. J. Song, M. Zhang et al., Drying Characteristics and Kinetics of Vacuum Microwave-Dried Potato Slices, Drying Technology, 27(9), 969-974, 2009.
[8]G. Farrel, W. A. M. McMinnet al., Microwave-Vacuum Drying Kinetics of Pharmaceutical Powders, Drying Technology, 23, 2131-2146, 2005.
[9]方良吉等人,2010年能源產業技術白皮書,經濟部能源局,財團法人中衛發展中心,台北市,2010。
[10]工研院能資所-吸收式冰水機(維護保養篇),溴化鋰溶液的性質,吸收式冷凍空調技術專輯(紀念李崇江博士),中華民國冷凍空調學會,pp. 14-21,1999。
[11]郭儒家,吸收式熱泵之種類及其原理,吸收式冷凍空調技術專輯(紀念李崇江博士),中華民國冷凍空調學會,pp. 1-6,1999。
[12]郭儒家、李崇江,下一代吸收式冰水機-三重效應熱循環系統,吸收式冷凍空調技術專輯(紀念李崇江博士),中華民國冷凍空調學會,pp. 29-37,1999。
[13]F. Cosenza, “Absorption in Falling Water/LiBr Films on Horizontal Tubes”, ASHRAE Transactions, 96(1), 693-701, 1990.
[14]K. J. Kim, N. S. Berman, “Absorption of Water Vapour into Falling Films of Aqueous Lithium Bromide”, International Journal of Refrigeration, 18(7), 486-494, 1995.
[15]L. Hoffman, “Experimental Investigation of Heat Transfer in a Horizontal Tube Falling Film Absorber with Aqueous Solutions of LiBr with and without Surfactants”, International Journal of Refrigeration, 19(5), 331-341, 1996.
[16]Z. Y. Ren, C. Y. Jiang, Y. G. Chen, “Experimental Study on the Influences of the Lithium-bromide’s Spray Amount on the System’s Performance”, Refrigeration Air Conditioning & Electric Power Machinery, Vol.26, No.5, pp.14-18, 2005.
[17]Jesse D. Killion, Srinivas Garimella, “Pendant droplet motion for absorption on horizontal tube banks”, International Journal of Heat and Mass Transfer, Vol.47, pp.4403–4414, 2004.
[18]Siyoung Jeong, Srinivas Garimella, “Falling-film and droplet mode heat and mass transfer in a horizontal tube LiBr/water absorber”, International Journal of Heat and Mass Transfer, Vol.45, pp.445–1458, 2002.
[19]H.M. Sabir, I.W. Eames, “Performance of film absorbers under the effect of a contaminant non-absorbable gas”, Applied Energy, Vol.63, pp.255-267 , 1999.
[20]T. Kashiwagi, J. Kim, N. B. Berman et al., “Basic Mechanism of Absorption Heat and The Interfacial Turbulence in Falling Film Absorption: Effects of Additives”, International Journal of Refrigeration, Vol.19(5), 322-330, 1996.
[21]Grossman, G., Gommed, K., “A Computer Model for Simulation of Absorption Systems in Flexible and Modular Form”, ASHRAE Trans., Vol.93 Part 2, pp.2389-2427, 1987.
[22]Grossman, G., Childs, K.W., “Computer Simulation of a Lithium Bromide-Water Absorption Heat Pump for Temperature Boosting”, ASHRAE Trans., Vol.89 Part 1B, pp.240-248, 1983.
[23]Grossman, G., Michelson, E., “A Modular Computer Simulation of Absorption Systems, ASHRAE Trans”, Vol.91 Part 2B, pp.1808-1827, 1985.
[24]吳坤達,低壓環境下陶瓷將廖脫水之腔體設計,碩士學位論文,國立成功大學,2008。
[25]小粟富士雄、小粟達男,圓筒與壓力容器,標準機械設計圖表遍覽,pp.(8-1)-(8-54),1995。
[26]S. M. Deng, W. B. Ma, “Experimental studies on the characteristics of an absorber using LiBr/H2O solution as working fluid”, International Journal of Refrigeration, Vol.22, pp.293-301, 1999.
[27]C. W. Parka, H. C. Cho, Y. T. Kang, “The effect of heat transfer additive and surface roughness of micro-scale hatched tubes on absorption performance”, International Journal of Refrigeration, Vol.27, pp.264–270, 2004.
[28]張炯堡,噴流形殼式熱交換器與板式凝結器之熱傳性能研究,博士學位論文,國立成功大學,1997。
[29]G. A. Florides, S. A. Kalogirou, S. A. Tassou, L. C. Wrobel, “Design and construction of a LiBr–water absorption machine, Energy Conversion and Management”, Vol.44, pp.2483–2508, 2003.
[30]R. J. Lee, R. M. DiGuilio, S.M. Jeter, A.S. Teja, “Properties of lithium bromide–water solutions at high temperatures and concentration”, II. Density and viscosity, ASHRAE Trans 1990, Vol.96, pp.709–28, 1990.
[31]J. P. Holman, “Experimental Methods for Engineers”, McGraw-Hill, New York, pp.49-62, 1976.