| 研究生: |
柯建村 Ke, Jian-Cun |
|---|---|
| 論文名稱: |
高性能鈀/金屬氧化物/碳化矽薄膜/正型-矽基板奈米柱PIN二極體一氧化碳感測器之研製 Preparation and Characterization of All Nanorod Structure Pd/MOx/SiC/Si PIN Diode CO Sensors |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 碳化矽 、奈米柱 、一氧化碳 、氣體感測器 |
| 外文關鍵詞: | silicon carbide, nanorods, co, gas sensors |
| 相關次數: | 點閱:91 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討整體奈米柱狀結構的蕭特基PIN二極體式一氧化碳感測器的研製。首先在正型矽(100)基板上經由硝酸銀及氫氟酸蝕刻出矽奈米柱狀結構,再利用快速升溫化學氣相沉積系統(RTCVD) 藉由SiH4, H2, C3H8混合氣體於其上成長本質單晶碳化矽薄膜,然後在濺鍍各種不同負型的金屬氧化層(WO3、SnO2、ZnO等),最後蒸鍍金屬鈀及鋁於最上面及背面分別作為催化層及金屬接觸層完成整個Pd/n-MOx/i-SiC/p-Si/Al PIN Schottky二極體的製作。
吾人利用FTIR、Raman、XRD 及SEM分別量測碳化矽薄膜原子間的鍵結,薄膜結晶及觀察表面結構和厚度來探討材料基本特性。此外,又分別選擇WO3、SnO2和ZnO三種不同金屬氧化物材料做為氣體感測層。由實驗結果發現,在三種不同金屬氧化物中以WO3對一氧化碳氣體的感測能力最佳。該元件在300℃,逆偏壓5V及100ppm的CO環境下,靈敏度達到463%。比沒有奈米柱狀結構感測器靈敏度9.31%相比和已發表者Au/WO3/SiN/p-Si結構於260℃,濃度3500ppm下的108%為佳。
本文也研究不同WO3厚度,碳化矽成長時間及操作溫度對於元件感測特性的影響。發現操作溫度在300℃時,WO3厚度為50nm、碳化矽薄膜為厚度100nm元件的感測特性最佳。一般而言,元件的感測能力隨著操作溫度升高而增加,但高到400℃時,元件整流特性遭到破壞,導致漏電流急速增加,使靈敏度降低。
最後,吾人也探討元件對感測氣體的選擇比,反應時間及再現性。發現對CO2及酒精氣體沒有明顯感測。在溫度300℃,濃度100ppm環境下有快速的反應時間(6秒),元件的再現性也佳。
In this thesis, we developed the all nanorod structure Pd/MOx/SiC/Si PIN Schottky diode for CO gas sensing applications. Firstly, the Si nanorods were formed on the P type (100) Si substrate in AgNO3-HF mixed etching solution. Then the intrinsic β-SiC film was deposited on the top of Si nanorods with RTCVD(Rapid-Thermal Chemical Vapor Deposition)from the SiH4, H2, and C3H8 mixture gas. After that, various metal oxides such as WO3、SnO2 and ZnO were deposited as sensing elements. Finally, to complete the device structure by was deposited on the top of metal oxide layers as the catalyst and electrode contact, and Al on the bottom as the back contact.
The SiC thin films were analyzed by using FTIR, Raman, XRD and SEM for measurement of bond structure, analyzing crystallinity, and examination of surface morphology as well as film thickness, respectively. Experimental results showed the Pd/WO3/SiC/p-Si sample has the highest sensitivity of 463% under 300℃, 5v reverse bias and 100ppm carbon monoxide ambient. The sensitivity is higher than 9.31% and 108% for the counterpart without nanorod structures and that of the reported Au/WO3/SiN/p-Si structure, respectively.
Furthermore, effects thickness of WO3 and SiC films on the CO sensing ability were investigated. It was found that the device with a 50nm WO3 and 100nm SiC film has the highest sensitivity. Moreover, a higher sensing ability was increasing with a higher operating the CO temperature, while it began to degrade above 400℃ due to the rapid increasing leakage current of the device.
Finally, we investigated the selectivity and time response of the developed sensor. No significant CO2 and alcohol gas sensing actions were found. Besides, the sensor has a reproducible response time of ~ 6 sec under a 300℃and 100ppm CO ambient.
[1]蔡嬪嬪,曾明漢,“氣體感測器之簡介、應用及市場”,材料與社會,
第68期 1992.
[2]蔡嬪嬪,曾明漢,“氣體感測器之簡介、應用及市場”, 材料與社
會,第150期六月1999.
[3]Bernhard M, Buhrke T, Bleijlevens B, De Lacey AL, Fernandez VM, Albracht SPJ and Friedrich B, “The H-2 sensor of Ralstonia eutropha - Biochemical characteristics, spectroscopic properties, and its interaction with a histidine protein kinase” Journal of Biological Chemistry ,vol.276, 2001 , pp.15592-15597
[4]Zhou HS, Yamada T, Asai K, Honma I, Uchida H and Katsube T, “NO gas sensor based on surface photovoltage system fabricated by self-ordered hexagonal mesoporous silicate film” Japanese Journal Of Applied Physics, ,vol 40, 2001 , pp.7098-7102
[5]Suzuki T, Kunihara K, Kobayashi M, Tabata S, Higaki K and Ohnishi H, “A micromachined gas sensor based on a catalytic thick film/SnO2 thin film bilayer and thin film heater - Part 1: CH4 sensing” Sensors And Actuators B-Chemical, ,vol 109, 2005 , pp.185-189
[6]Van Hieu N , Dung NQ, Tam PD , Trung T, and Chien ND, “Thin film polypyrrole/SWCNTs nanocomposites-based NH3 sensor operated at room temperature” Sensors And Actuators B-Chemical, ,vol 140, 2009 , pp.500-507
[7]Wark, K., C. F. Warner, and W. T. Davis, “ Air Pollution-Its Origin and Control” , Addision-Wesley, Third Editiom , 1998 , pp. 295-314
[8]Gilbert M. Masters, “Introduction to Environmental Engineering and
Science”, Prentice Hall, New Jersey 1997.
[9]J. H Seinfeld, “Atmospheric Chemistry and Physics of Air Pollution”,
Wiley, New York 1986.
[10] “ 燃氣熱水器CO中毒統計資料 ” 苗栗縣政府消防局,2009
[11]Daniel MC, Astruc D, “Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology” Chemical Reviews ,vol 104, 2004 , pp.293-346
[12]Crooks RM, Zhao MQ, Sun L, Chechik V, Yeung LK “Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis” Accounts Of Chemical Research ,vol 34, 2001 , pp.181-190
[13]Li LS, Walda J, Manna L, Alivisatos AP. “Semiconductor nanorod liquid crystals” Nano Letters ,vol 6, 2002 , pp.557-560
[14]Hu JT, Odom TW, Lieber CM “Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes” Accounts Of Chemical Research ,vol 32, 1999 , pp.435-445
[15]David C. Bell, Yue Wu, Carl J. Barrelet, Silvija Grade ak, Jie Xiang, Brian P.Timko, Charles M.Lieber, Microscopy Research and Technique, vol. 64(5-6), pp. 373-389, 2004.
[16]Ajayan PM“Nanotubes from carbon” Chemical Reviews ,vol 99, 1999 , pp.1787-1799
[17]Arnold MS, Avouris P, Pan ZW, Wang ZL. “Field-effect transistors based on single semiconducting oxide nanobelts” Journal Of Physical Chemistry ,vol 107, 2003 , pp.659-663
[18]Peng KQ, Yan YJ, Gao SP, Zhu J,“Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry” Advanced Materials ,vol 14, 2002 , pp.1164-1167
[19]Peng KQ, Yan YJ, Gao SP, Zhu J, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition” Advanced Functional Materials ,vol 13, 2003 , pp.127-132
[20]Peng KQ, Zhu J , “Simultaneous gold deposition and formation of silicon nanowire arrays” Journal Of Electroanalytical Chemistry ,vol 558, 2003 , pp.35-39
[21]Peng KQ, Xu Y, Wu Y, Yan YJ, Lee ST, Zhu J, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications” SMALL ,vol 1, 2005 , pp.1062-1067
[22]Peng KQ, Hu JJ, Yan YJ, Wu Y, Fang H, Xu Y, Lee ST, Zhu J, “Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles” Advanced Functional Materials ,vol 16, 2006 , pp.387-394
[23]Qiu T, Wu XL, Yang X, Huang GS, Zhang ZY, “Self-assembled growth and optical emission of silver-capped silicon nanowires” Applied Physics Letters ,vol 84, 2004 , pp.3867-3869
[24]Tan OK, Zhu W, Tse MS, Yao X “Hydrogen-sensitive I-V characteristics of metal-ferroelectric gas sensor device fabricated by sol-gel technique” Materials Science And Engineering ,vol 58, 1999 , pp.221-228
[25]Svenningstorp H, Tobias P, Lundstrom I, Salomonsson P, Martensson P, Ekedahl LG, Spetz AL , “Influence of catalytic reactivity on the response of metal-oxide-silicon carbide sensor to exhaust gases” Sensors And Actuators B-Chemical ,vol 57, 1999 , pp.159-165
[26]Samman A, Gebremariam S, Rimai L, Zhang X, Hangas J, Auner GW, “Silicon-carbide MOS capacitors with laser-ablated Pt gate as combustible gas sensors” Sensors And Actuators B-Chemical ,vol 63, 2000 , pp.91-102
[27]Liao L, Zhang Z, Yan B , Zheng Z, Bao QL , Wu T , Li CM, Shen ZX, Zhang JX, Gong H, Li JC ,Yu T, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors” Nanotechnology ,vol 20, 2009
[28]Rideout VL “A Review Of Theory, Technology And Applications Of Metal-Semiconductor Rectifiers ” Thin Solid Films ,vol 48, 1978 , pp.261-291
[29] S. M. Sze, “Physics of semiconductor devices”ch5, wiley, New York, 1980.
[30]Neamen, “Semiconductor physics and device” ch9, p336, McGraw-Hill, 1992.
[31] Windischmann H, Mark P ,“A model for the operation of a thin film SnOx conductance-modulation carbon monoxide sensor” Journal Of The Electrochemical Society , ,vol 126, 1979 , pp.627-633
[32] S. R. Morrison, “The Chemical Physics of Surfaces,2nd” , New York
,Plenum Press, pp.251, 1990.
[33]N.Yamazoe, J.Fuchigami, M.Kishikawa and T.Seiyama, “Interactions of tin oxide surface with O2, H2O and H2” Surface Science, vol 86, 1979 , pp.335-344
[34] K. M. Sancier, “ESR evidence of CO oxidation by more than one oxygen species sorbed on ZnO” , Journal of Catalysis, vol 9, 1967 , pp.331-335
[35]S.C.Chang, “Thin-film semiconductor NOx sensor” , IEEE Transactions on Electron Devices ,vol 26, 1979 , pp.1875-1880
[36]Steckl AJ, LI JP, “Epitaxial Growth Of Beta-SiC On Si By RTCVD With C3H8 And SiH4” , IEEE Transactions On Electron Devices ,vol 39, 1992 , pp.64-74
[37]Wen-I Hsu , Shui-Jinn Wang “Fabrication and Characterization of Single-Crystalline Silicon Nanowires Prepared by Metal-Induced Etching
” , National Cheng Kung University , 2008
[38]Sun Y, Miyasato T “Infrared Absorption Properties Of Nanocrystalline Cubic SiC Films” , Japanese Journal Of Applied Physics ,vol 37, 1998 , pp.5485-5489
[39]Zhu WJ, Tamagawa T, Gibson M, Furukawa T, Ma TP “Investigation and characterisation of silicon nitride and silicon carbide thin films” , Surface & Coatings Technology ,vol 174, 2003 , pp.365-369
[40]Yuan C, Steckl AJ, Loboda MJ “Effect Of Carbonization On The Growth Of 3C-SiC On Si (111) By Silacyclobutane” , Applied Physics Letters ,vol 64, 1994 , pp.3000-3002
[41]Hubner M , Simion CE, Haensch A, Barsan N , Weimar U “CO sensing mechanism with WO3 based gas sensors” , Sensors And Actuators ,vol 151, 2010 , pp.103-106
[42]Hellmich W, Muller G, Bosch-Von Braunmuhl C, Doll T, Eisele I “Field-effect-induced gas sensitivity changes in metal oxides” , Sensors And Actuators ,vol 43, 1997 , pp.132-139
[43]Hsueh TJ, Chen YW, Chang SJ, Wang SF, Hsu CL, Lin YR, Lin TS, Chen IC “ZnO nanowire-based CO sensors prepared at various temperatures” , Journal Of The Electrochemical Society ,vol 154, 2007 , pp.393-396
[44]Duffy R, Heringa A, Venezia VC, Loo J , Verheijen MA, Hopstaken MJP, van der Tak K, de Potter M, Hooker JC, Meunier-Beillard P, Delhougne R “Quantitative prediction of junction leakage in bulk-technology CMOS devices” , Solid-State Electronics ,vol 54, 2010 , pp.243-251
[45]Lee CY, Chang CC, Lo YM “Fabrication of a Flexible Micro CO Sensor for Micro Reformer Applications” , Sensors ,vol 10, 2010 , pp.10701-10713
[46]Komura Y, Tabata A , Narita T, Kanaya M, Kondo A, Mizutani T “Film properties of nanocrystalline 3C-SiC thin films deposited on glass substrates by hot-wire chemical vapor deposition using CH4 as a carbon source” , JJAP ,vol 46, 2007 , pp.45-50
[47]Zhu HO , Kim JR, Ihm SK “Characteristics of Pt/WO3/CeO2/ZrO2 Catalysts for catalytic reduction of NO by CO” , Applied Catalysis B-Environmental ,vol 86, 2009 , pp.87-92
[48]Gaidi M, Chenevier B, Labeau M “Electrical properties evolution under reducing gaseous mixtures (H-2, H2S, CO) of SnO2 thin films doped with Pd/Pt aggregates and used as polluting gas sensors” , Sensors And Actuators B-Chemical ,vol 62, 2000 , pp.43-48
[49]Stankova M, Vilanova X, Calderer J, Llobet E, Brezmes J, Gracia I, Cane C, Correig X “Sensitivity and selectivity improvement of rf sputtered WO3 microhotplate gas sensors” , Sensors And Actuators B-Chemical ,vol 113, 2006 , pp.241-248
校內:2016-07-26公開