簡易檢索 / 詳目顯示

研究生: 王佳琨
Wang, Jia-Kuen
論文名稱: 以聚焦離子束製作單一次微米尺度氮化銦鎵/氮化鎵發光二極體元件之光電特性研究
Characterization of InGaN/GaN MQW LEDs with Single Sub-Micro Meter Scale Fabricated by Focused Ion Beam
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 79
中文關鍵詞: 聚焦離子束氮化銦鎵氮化鎵應爲釋放發光二極體鎵空缺氮空缺
外文關鍵詞: FIB, InGaN, GaN, LED, strain release, Ga vacancy, N vacancy
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主題是以雙束聚焦式離子束顯微切割儀(dual-beam focused ion beam system , DB-FIB)作為工具,對使用有機金屬化學氣相沉積法成長於c-plane藍寶石基板之氮化鎵系列LED元件進行蝕刻,製作出次微米尺度的LED,並研究其光電特性。
    由於藍光LED量子井結構為InGaN/GaN之異質接面,因晶格不匹配,將導致內建壓電場的產生,壓電場會造成能帶傾斜,進而降低電子、電洞波函數的重疊機率,使得發光效率減弱,此現象即為量子侷限史塔克效應(Quantum Confine Stark Effect, QCSE)。為了降低應力所產生的壓電場,將LED尺寸微小化,可達成應力釋放的目的,進而有機會增加LED內部量子效率。
    實驗發現FIB應用於GaN材料蝕刻,可達到次微米等級之線寬,目前做出最小線寬達到約800nm,並且仍具有LED特性。再研究經由FIB 蝕刻過後的LED 發現,其相較未經蝕刻的元件出現明顯較大的漏電流,量測變溫電流-電壓特性(77-300K)發現此漏電機制在低溫下被抑制,代表此現象很有可能是由於缺陷能階輔助造成的復合現象。另一方面,由於蝕刻過後的元件,表面積與體積的比值變大,亦即單位體積下有較大的表面積,使得表面復合的現象也更為顯著,也使得漏電流增加。
    在發光特性方面,在低階電流注入時,可以發現蝕刻過後的LED出現發光波長藍移的現象,此現象間接證明經由LED微小化的蝕刻能達到應力釋放的效果,另外由於應力釋放降低了QCSE效應,使得發光波長較不隨著電壓變化而有所移動,我們亦認為在達到次微米等級之元件,內部量子效率亦有所提升。至於半高寬的部分,經FIB蝕刻過後的元件相較於未蝕刻元件,在相同電流密度下有著較窄的半高寬,此原因可歸因於蝕刻過後元件漏電流較大,即其電阻率亦較小,因此產生的熱效應較小所導致。
    此外,在發光頻譜中黃光的部分,我們發現蝕刻過後的元件出現兩個黃光峰值的訊號,而標準元件則沒有。這黃光訊號一般認為是由於氮化鎵材料缺陷所造成的雜質能階。根據SRIM(stopping range of ions in matter) 2008電腦模擬軟體模擬結果,FIB使用的鎵離子轟擊會對氮化鎵材料產生氮空缺(Nitride vacancy)以及鎵空缺(Gallium vacancy),而這缺陷在氮化鎵中形成一缺陷能階,本文亦探討氮空缺及鎵空缺在氮化鎵中扮演的角色及缺陷能階位置。

    In this essay, dual-beam focused ion beam system (DB-FIB) was used to finish dry etching process on the GaN-based LED devices which were growth on c-plane sapphire substrate by metal-organic chemical vapor deposition (MOCVD). By using this technique, we have fabricated the sub-micrum meter scale LEDs, and measured their electric property and light emission characteristics.
    Due to the multi quantum wells (MQWs) of blue LED is formed by InGaN/GaN heterojuction, the lattice mismatch between GaN and InGaN generates naturally built-in piezoelectric polarization and leads to band tilt. The band tilt can abate the overlap of electron and hole wavefunction, and it results in the decreasing of luminescent efficiency. To lower the stress induced piezoelectric polarization, decreasing LED size will be a possible opportunity to release the crystal strain and increase the internal quantum efficiency.
    In our experiment, we have already fabricated sub-micro meter scale GaN-based LED by DB-FIB. The scale of fabricated linewidth minimizes to 500nm and still maintains its LED property. It is obvious that after FIB etching the leakage current increases. According to the temperature-dependent (from 77K to 300K) of current-voltage characteristics, the quench of leakage current in low temperature might stem from the defect assist recombination (or call Shockley-Read-Hall recombination). On the other hand, LED specimen which were after process of FIB etching have larger surface-to-volume ratio, meaning that the surface recombination current is more significant.
    When mention to optical properties, we can find that the peak wavelength of FIB-damage specimen show blueshift while LED device operate in low current density. This is the evident of stain release by scale down. Besides, strain release can reduce quantum confine stark effect made the luminescent wavelength almost not blueshift with the current increases, and it also promote the internal quantum efficiency. The full width of half maximum (FWHM) in the electric luminescent spectrum, FWHM of the LED device after FIB etching decreases with increasing current density. FIB damage could increase the leakage current and decrease the resistance, so that can decrease the heat generation, too.
    There are two distinct yellow luminescent (YL) peaks in our LED devices after ion beam etching, which are not shown in the reference (un-etched) samples. A lot of papers have already studies this phenomenon, the YL is generally caused by GaN material defect. By using SRIM (stopping range of ions matter) 2008 simulate Ga ions incident into GaN, the result reveals there are a lot of vacancies generated (330 vacancy per 1000 Ga ion incident), especially Ga vacancies. We also make a study of Ga vacancy in GaN and draft the position of defect state in GaN band diagram.

    摘要 I ABSTRACT III 致謝 V 表目錄 VIII 圖目錄 IX 第一章 簡介 1 1-1 氮化合物材料介紹 2 1-2 發光二極體介紹 3 參考文獻 4 第二章 理論基礎 6 2-1氮化銦鎵/氮化鎵(INGAN/GAN)量子井結構 6 2-1.1氮化銦鎵材料成長 6 2-1.2 氮化銦鎵能隙大小 6 2-1.3 氮化銦鎵/氮化鎵多層量子井能帶結構 7 2-2 三五族氮化物極化效應 8 2-2.1三五族氮化物極化效應簡介 8 2-2.2 氮化銦鎵/氮化鎵多層量子井極化效應 8 2-2.3 極化電場對氮化銦鎵/氮化鎵多層量子井影響 10 2-3非輻射復合機制 11 2-3.1 Shockley-Read-Hall非輻射復合機制 11 2-3.2 氮化鎵材料中的黃光機制 14 2-3.3 歐傑復合 14 2-4表面非輻射復合機制 16 參考文獻 21 第三章 製程及量測 24 3-1 動機及目的 24 3-2元件製作流程 24 3-3元件製程設備及量測儀器介紹 29 第四章 元件量測結果討論 34 4-1 元件電壓電流特性分析 34 4-1.1 定義電流通過區域 34 4-1.2 順逆偏下電壓電流特性 35 4-1.3 變溫之電壓電流特性 35 4-2 元件發光特性分析 37 4-2.1微小化製程對發光波長之探討 37 4-2.2微小化製程對發光效率之探討 38 4-2.3微小化製程對元件發光頻譜半高寬之影響 40 4-2.4元件變溫電激發頻譜量測討論 42 4-3離子轟擊對元件產生之影響 46 4-3.1離子佈植模擬簡介 46 4-3.2 鎵離子佈值進入氮化鎵模擬 47 4-3.3 元件發光頻譜黃光區探討 48 參考文獻 76 第五章 結論與未來展望 78

    第一章
    [1]G. S. Nakamura, “InGaN-based violet laser diodes”, Semicond. Sci.Technol. Vol. 14, pp.27 (1999)
    [2]M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasingame, and A. R. Bhattarai, “Schottky barrier photodetector based on Mg-doped p-type GaN films”, Appl. Phys. Lett. Vol. 63, pp.2455 (1993)
    [3]Baodan Liu and Yoshio Bando, “Quasi-aligned single-crystalline GaN nanowire arrays”, Appl. Phys. Lett. Vol.87, 073106 (2005)
    [4]Horng-Shyang Chen, Dong-Ming Yeh, Yen-Cheng Lu, Cheng-Yen Chen, Chi-Feng Huang, Tsung-Yi Tang, CC Yang, Cen-Shawn Wu, and Chii-Dong Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts”, Nanotechnology Vol.17 pp.1454–1458 (2006)
    [5]F. Demangeot, J. Gleize, J. Frandon, and M. A. Renucci, “Optical investigation of micrometer and nanometer-size individual GaN pillars fabricated by reactive ion etching”, Journal of Applied Physics Vol.91, pp.10 (2002)
    [6]H. W. Choi, C. W. Jeon, C. Liu, I. M. Watson, and M. D. Dawson, “InGaN nano-ring structures for high-efficiency light emitting diodes”, Appl. Phys. Lett. Vol. 86, 021101 (2005)
    [7]S. Yoshida, S. Misawa, and S.Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN‐coated sapphire substrates”, Appl. Phys. Lett. Vol.42, 427 (1983)
    [8]H. Amano, N. Sawaki, I. Akasaki, and Y. Toyota, Appl. Phys. Lett. Vol.48, 353 (1986); H. Amano, I. Akasaki, T.Kozawa, K. Hiramatsu, N. Sawaki, K. Ikeda, and Y. Ishi, J.Lumin. Vol.121 , pp.40-41 (1988); I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, J. Cryst. Growth Vol.98, 209 (1989)
    [9]C. Q. Chen, J. P. Zhang, V. Adivarahan, A. Koudymov, H. Fatima, G. Simin, J. Yang, and M. Asif Khan, “AlGaN/GaN/AlGaN double heterostructure for high-power III-N field-effect transistors”, Appl. Phys. Lett. Vol.82, 4593 (2003)
    [10]M. J. Manfra, L. N. Pfeiffer, K. W. West, H. L. Stormer, K. W. Baldwin, J. W. P. Hsu, D. V. Lang, and R. J. Molnar, “High-mobility AlGaN/GaN heterostructures grown by molecular-beam epitaxy on GaN templates prepared by hydride vapor phase epitaxy”, Appl. Phys. Lett. Vol.77, 2888 (2000)
    [11]R. C. Powell, N. E. Lee, Y. W. Kim, and J. E. Greene, “Heteroepitaxial wurtzite and zinc‐blende structure GaN grown by reactive‐ion molecular‐beam epitaxy: Growth kinetics, microstructure, and properties”, J. Appl. Phys. Vol.73, 189(1993)
    [12]M. E. Lin, B. N. Sverdlov, and H. Morkoc, “Growth and characterization of GaN on c‐plane (0001) sapphire substrates by plasma‐enhanced molecular beam epitaxy”, J. Appl. Phys. Vol.74, 5038 (1993)
    第二章
    [1]Shuji Nakamura and Takashi Mukai, “High-Quality InGaN Films Grown on GaN Films”, J. Appl. Phys. Vol.31, L1457-L1459 (1992)
    [2]I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN”, Appl. Phys. Lett. Vol.69, 2701 (1996)
    [3]Yen-Sheng Lin, Kung-Jeng Ma, C. Hsu, Shih-Wei Feng, Yung-Chen Cheng, Chi-Chih Liao, C. C. Yang, Chang-Cheng Chou, Chia-Ming Lee, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells”, Appl. Phys. Lett. Vol.77, 2988 (2000)
    [4]M. D. McCluskey, C. G. Van de Walle, L. T. Romano, B. S. Krusor, and N. M. Johnson, “Effect of composition on the band gap of strained InxGa1−xN alloys”, J. Appl. Phys. Vol.93, 4340 (2003)
    [5]J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, andW. J. Schaff, “Small band gap bowing in In1–xGaxN alloys”, Appl. Phys. Lett. Vol.80, 4741 (2002)
    [6]Carl J. Neufeld, Nikholas G. Toledo, Samantha C. Cruz, Michael Iza, Steven P. DenBaars, and Umesh K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap”, Appl. Phys. Lett. Vol.93, 143502 (2008)
    [7]Z. Dridi, B. Bouhafs, and P. Ruterana, Semicond, “First-principles investigation of lattice constants and bowing parameters in wurtzite AlxGa1− xN, InxGa1− xN and InxAl1− xN alloys”, Sci. Technol. Vol.18, 850(2003)
    [8]Bo-Ting Liou, Cheng-Yang Lin, Sheng-Horng Yen, Yen-Kuang Kuo, “First-principles calculation for bowing parameter of wurtzite InxGa1-xN”, Opt. Commun Vol.249, 217(2005)
    [9]M. Moret, B.Gil, S.Ruffenach, O.Briot, Ch.Giesen, M.Heuken, S.Rushworth, T.Leese, M.Succi, “Optical, structural investigations and band-gap bowing parameter of GaInN alloys”, J. Cryst. Growth Vol.311, 2795–2797 (2009)
    [10]Poul Georg Moses and Chris G. Van de Walle, “Band bowing and band alignment in InGaN alloys”, Appl. Phys. Lett. Vol.96, 021908 (2010)
    [11]T. L. Tansley and C. P. Foley, “Optical band gap of indium nitride”, J. Appl. Phys. Vol.59, 3241-3244 (1986)
    [12]V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap”, Phys. Stat. Sol. B Vol.229, R1-R3 (2002)
    [13]T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, “Optical bandgap energy of wurtzite InN”, Appl. Phys. Lett. Vol.81, 1246-1248 (2002)
    [14]S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III–nitrides: Growth, characterization, and properties”, J. Appl. Phys. Lett. Vol.87, 965 (2000)
    [15]J. L. Sánchez-Rojas, J. A. Garrido, and E. Mun ̃oz, “Tailoring of internal fields in AlGaN/GaN and InGaN/GaN heterostructure devices”, Phys. Rev. B Vol.61, 2773 (2000)
    [16]F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides”, Phys. Rev. B Vol.56, 10024 (1997)
    [17]J.A Davidson, P Dawson, Tao Wang, T Sugahara, J.W Orton and S Sakai, “Photoluminescence studies of InGaN/GaN multi-quantum wells”, Semicond. Sci. Technol. Vol.15, 497–505 (2000)
    [18]R.L Longini, R.F Greene, “Ionization Interaction between Impurities in Semiconductors and Insulators”, Phys. Rev. Vol.102, 992–999 (1956)
    [19]G.A Baraff, M Schlüter, “Electronic structure, total energies, and abundances of the elementary point defects in GaAs”, Phys. Rev. Lett. Vol.55, 1327–1330 (1985)
    [20]W Shockley, W.T Read, “Statistics of the recombinations of holes and electrons”, Phys. Rev. Vol.87, 835–842 (1952)
    [21]W. Grieshaber, E. F. Schubert, and I. D. Goepfert, “Competition between band gap and yellow luminescence in GaN and its relevance for optoelectronic devices”, J. Appl. Phys. Vol.80, 4615 (1996)
    [22]Jörg Neugebauer and Chris G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN”, Appl. Phys. Lett. Vol.69, 503 (1996)
    [23]K. Saarinen, T. Laine, S. Kuisma, J. Nissilä, P. Hautojärvi, L. Dobrzynski, J. M. Baranowski, K. Pakula, R. Stepniewski, M. Wojdak, A. Wysmolek, T. Suski, M. Leszczynski, I. Grzegory, “Observation of Native Ga Vacancies in GaN by Positron Annihilation”, Phys. Rev. Lett. Vol.79, 3030–3033 (1997)
    [24]G. Li, S. J. Chua, S. J. Xu, W. Wang, P. Li, B. Beaumont, and P. Gibart, “Nature and elimination of yellow-band luminescence and donor–acceptor emission of undoped GaN”, Appl. Phys. Lett. Vol.74, 2821 (1999)
    [25]施敏, “Semiconductor Devices Physics And Technology”, 2nd Edition, 國立交通大學出版社, CH.3 (2006)
    [26]L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu, and J. K. Sheu, “High-dielectric-constant Ta2O5/n-GaN metal-oxide- semiconductor structure”, Appl. Phys. Lett. Vol.77, 3788 (2000)
    [27]R. Aleksiejūnas, M. Sūdžius, T. Malinauskas, J. Vaitkus, K. Jarašiūnas, and S. Sakai, “Determination of free carrier bipolar diffusion coefficient and surface recombination velocity of undoped GaN epilayers”, Appl. Phys. Lett. Vol.83, 1157 (2003)
    第四章
    [1]S. Rubanov & P. R. Munroe, “FIB-induced damage in silicon”, Journal of Microscopy Vol.214, Issue.3, 213-221 (2004)
    [2]Lun Dai and Bei Zhang, “Comparison of optical transitions in InGaN quantum well structures and microdisks”, J. Appl. Phys. Vol.89, 4951 (2001)
    [3]H. W. Choi, C. W. Jeon, C. Liu, I. M. Watson, M. D. Dawson, P. R. Edwards, R. W. Martin, S. Tripathy, and S. J. Chua, “InGaN nano-ring structures for high-efficiency light emitting diodes”, Appl. Phys. Lett. Vol.86, 021101 (2004)
    [4]F. Demangeot, J. Gleize, J. Frandon, and M. A. Renucci, “Optical investigation of micrometer and nanometer-size individual GaN pillars fabricated by reactive ion etching”, J. Appl. Phys. Vol.91, 6520 (2002)
    [5]Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence”, Appl. Phys. Lett. Vol.91, 141101 (2007)
    [6]J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells”, Appl. Phys. Lett. Vol.92, 261103 (2008)
    [7]Xianfeng Ni, Qian Fan, Ryoko Shimada, Ümit Özgür, and Hadis Morkoç, “Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells”, Appl. Phys. Lett. Vol.93, 171113 (2008)
    [8]Yong-Hoon Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “”S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells”, Appl. Phys. Lett. Vol.73, 1370 (1998)
    [9]Petr G. Eliseev, Piotr Perlin, Jinhyun Lee, and Marek Osiński, ““Blue” temperature-induced shift and band-tail emission in InGaN-based light sources”, Appl. Phys. Lett. Vol.71, 569 (1997)
    [10]E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells”, Appl. Phys. Lett. Vol.80, 977 (2002)
    [11]C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in p-n junctions and p-n junction characteristics”, Proc. IRE 45, 1228 (1957)
    [12]A. Chitnis, A. Kumar, M. Shatalov, V. Adivarahan, A. Lunev, J. W. Yang, G. Simin, and M. Asif Khan, “High-quality p –n junctions with quaternary AlInGaN/InGaN quantum wells”, Appl. Phys. Lett. Vol.77, 3800 (2000)
    [13]J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN”, Appl. Phys. Lett. Vol.69, 503 (1996)
    [14]E. F. Schubert, I. D. Goepfert, and J. M. Redwing, “Evidence of compensating centers as origin of yellow luminescence in GaN”, Appl. Phys. Lett. Vol.71, 3224 (1997)
    [15]D.M. Hofmann, D. Kovalev, G. Steude, B.K. Meyer, A. Hoffmann, L. Eckey, R. Heitz, T. Detchprom, H. Amano and I. Akasaki, “Properties of the yellow luminescence in undoped GaN epitaxial layers”, Phys. Rev. B Vol.52, 16702–16706 (1995)
    [16]Xiao-Lin Hu , Jun-Qian Li, Yong-Fan Zhang ,Hao-Hong Li, Yi Li, “Theoretical analysis on yellow emission of gallium nitride with vacancy defects or impurities”, Theor Chem Acc Vol.123, 521-525 (2009)
    [17]D. C. Look, D. C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones, and R. J. Molnar, “Defect donor and acceptor in GaN”, Phys. Rev. Lett. Vol.79, 2273 (1997)

    無法下載圖示 校內:2013-07-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE