簡易檢索 / 詳目顯示

研究生: 趙大勛
Chao, Ta-Hsun
論文名稱: 鎳鋁合金之形狀記憶行為的微結構分析
Microstructural analysis on shape memory behavior of NiAl alloy
指導教授: 張怡玲
Chang, I-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 115
中文關鍵詞: 分子動力學相轉換形狀記憶效應
外文關鍵詞: molecular dynamics, phase transformation, shape memory effect
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以分子動力學方法研究鎳鋁合金塊材之形狀記憶行為,觀察Ni含量為68%的合金在不同的晶格排列方向的情形下對於相轉變的影響,並且在低溫時施加各式的複合加載應變至塑性變形,而後在進行升降溫循環以檢驗是否任意的加載造成的塑性變形皆可經溫度循環回復原狀。
    由升降溫循環模擬的結果發現到高溫時鎳鋁合金以體心立方結構(沃斯田體相)穩定存在,而在低溫狀態時,晶格以斜方晶體(麻田散體相)的狀態出現。對於Ni含量為68%的合金來說,其相轉換溫度區間不會因為內部原子分佈位置不同而改變。此外,由模擬發現因為內部原子空間分佈相同,不同晶格排列的模型皆有相同的相轉換溫度區間。
    由施加複合加載的模擬發現,在低溫下鎳鋁合金並非施加任意加載至塑性變形皆具有形狀記憶的行為,以CNP參數法輔助,發現唯有施加使內部雙晶方向層在特定平面上產生移動的加載方式才能使材料透過溫度循環回復原狀。透過最大剪應力理論,發現具有形狀回復行為的模擬其最大剪應力值會低於其餘無法回復原狀的模擬值。

    We employed molecular dynamics simulation to investigate the shape memory behavior of bulk Ni-Al alloy (68% Ni atom composition). The thermal processes, i.e., cooling and heating, were applied and the equilibrated Ni-Al models were observed in order to determine the phase state at various temperatures as well as the phase transformation temperature. The effects of the simulated model with different crystal orientations were also studied. At low temperature, various loading conditions, i.e., uniaxial, simple tension, biaxial, were applied incrementally to the alloy bulk till plasticity took place. Then the loadings were removed, the models were subjected to heating process to examine whether it would restore to its original shape or not. Common neighbor parameter (CNP) was adopted to investigate the atomic configurations during the simulations.
    From the heating and cooling simulations, we found that the Ni-Al alloy was body-centered cubic structure (austenite phase) at high temperature, i.e., 1700K, while it was stable as monoclinic structure (martensite phase) at low temperature. Regardless Ni atomic distribution, the phase transformation temperature did not change as long as the Ni composition ratio remained the same. It was also observed that the simulated models with different crystal orientations, which possess the same Ni composition ratio and atomic arrangement in space, would have the same phase transformation temperature.
    From different loading simulations, it was found that some plastically deformed models would not restore to its original shape after heating to 1700K. Combined with CNP observation, it was noticed that only those were able to force the twinning variants to move on the specific plane would exhibit shape memory behavior. For those loadings which would restore to its original shape, the corresponding maximum shear stress was clearly smaller than those that did not restore.

    摘要 I Abstract II 致謝 XVI 目錄 XVII 圖目錄 XIX 表目錄 XXIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 本文架構 4 第二章 分子動力學理論與形狀記憶 5 2-1 分子動力學理論 5 2-1-1 基本理論與假設 5 2-1-2 系綜觀念 6 2-1-3 分子作用力與勢能函數 6 2-1-4 原子級應力 12 2-1-5 週期性邊界與最小映像法則 13 2-1-6 初始條件設定 15 2-1-7 Gear’s 五階預測修正法 16 2-1-8 截斷半徑法與Verlet表列法 17 2-1-9 參數分析方法 19 2-2 形狀記憶合金理論 20 2-2-1 形狀記憶效應 20 2-2-2 形狀記憶合金之相轉換 21 第三章 Ni-Al合金之相轉變溫度 30 3-1 原子模型 30 3-2 勢能函數選擇 31 3-3 模擬流程 31 3-4 相轉變溫度 32 第四章 Ni-Al合金之形狀記憶效應 42 4-1 模擬流程 42 4-2 複合加載對形狀記憶效應的影響 43 4-3 參數分析與討論 45 第五章 結論與未來展望 80 5-1 結論 80 5-2 未來展望 81 參考文獻 82 附錄一 85 A模型模擬數據 85 C模型模擬數據 101

    [1] L. C. Chang and T. A. Read, "On diffusionless transformation in Au-Cd single crystals containing 47.5 atomic percent cadmium: characteristics of single–interface transformation", Transactions of the Metallurgical Society of Aime, vol. 189, pp. 47, 1951.
    [2] W. J. Buehler, J. V. Gilfrich and R. C. Wiley, "Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi", Journal of Applied Physics, vol. 34, pp. 1475–1477, 1963.
    [3] S. Rubini and P. Ballone, "Quasiharmonic and molecular dynamics study of the martensitic transformation in Ni-Al alloys", Physical Review B, vol. 48, pp. 99-111, 1993.
    [4] Y. Shao, P. C. Clapp and J. A. Rifkin, "Molecular Dynamics Simulation of Martensitic Transformation in NiAl", Metallurgical and Material Transactions A, vol 27A, pp 1477-1489, 1996.
    [5] U. Pinsook and G. J. Ackland, "Atomistic simulation of shear in a martensitic twinned microstructure", Physical Review B, vol 62, pp 5427-5434, 2000.
    [6] S. Ozgen and O. Adiguzel, "Molecular dynamics simulation of diffusionless phase transformation in a quenched NiAl alloy model", Journal of Physics and Chemistry of Solids, vol. 64, pp. 459–464, 2003.
    [7] O. Kastner, "Molecular-dynamics of a 2D model of the shape memory effect part II: thermodynamics of a small system", Continuum Mechanics and Thermodynamics, vol. 18, pp.63-81, 2006.
    [8] T. Uehara and T. Tamai, "An atomistic study on shape-memory effect by shear", Mechanics of Advanced Materials and Structures, vol. 13, pp. 197-204, 2006.
    [9] T. Uehara, C. Asai and N. Ohno, "Molecular dynamics simulation of shape memory behaviour using a multi-grain model", Modelling and Simulation in Materials Science and Engineering, vol. 17, pp. 035011, 2009.
    [10] J. H. Irving and J. G. Kirkwood, "The statistical mechanical theory of transport properties. IV. the equation of hydrodynamics", Journal of Chemical Physics, vol. 18, pp. 817-823, 1950.
    [11] R. J. Arsenault and J. R. Beeler, Computer simulation in material science: Asm International, 1988.
    [12] F. Reif, Fundamentals of statistical and thermal physics: McGraw Hill, 1985.
    [13] C. L. Tien and J. H. Lienhard, Statistical thermo dynamics: MeiYa, 1971.
    [14] J. M. Haile, Molecular dynamics simulation: John Wiley & Sons, 1997.
    [15] E. Hernandez, C. Goze, P. Bernier and A. Rubio, "Elastic properties of C and BxCyNz composite nanotubes", Physical Review Letters, vol. 80, pp. 4502, 1998.
    [16] G. C. Maitland and M. Rigby, Intermolecular forces : their origin and determination: Oxford University Press, 1987.
    [17] D. C. Rapaport, The art of molecular dynamics simulation: Cambridge University Press, 1997.
    [18] J. E. Jones, "On the determination of molecular fields. II. from the equation of state of a gas", Proceedings of the Royal Society of London. Series A, vol. 106, pp. 463-477, 1924.
    [19] L. A. Girifalco and V. G. Weizer, "Application of the morse potential function to cubic metals", Physical Review, vol. 114, pp. 687, 1959.
    [20] F. Milstein, "Theoretical strength of a perfect crystal with exponentially attractive and repulsive interatomic interactions", Journal of Applied Physics, vol. 44, pp. 3833-3840, 1973.
    [21] F. Cleri and V. Rosato, "Tight-binding potentials for transition metals and alloys", Physical Review B, vol. 48, pp. 22, 1993.
    [22] V. Rosato, M. Guillope and B. Legrand, "Thermodynamical and structural-properties of fcc transition-metals using a simple tight-binding Model", Philosophical Magazine A-physics of Condensed Matter Structure Defects and Mechanical Properties, vol. 59, pp. 321-336, 1989.
    [23] X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford-Long, G. D. W. Smith, P. H. Clifton, R. L. Martens and T. F. Kelly, "Atomic scale structure of sputtered metal multilayers", Acta Materialia, vol. 49, pp. 4005-4015, 2001.
    [24] N. Miyazaki and Y. Shiozaki, "Calculation of mechanical properties of solids using molecular dynamics method", Journal Series A-mechanics and Material Engineering, vol. 39, pp. 606-612, 1996.
    [25] G. S. Grest, B. Dunweg and K. Kremer, "Vectorized link cell fortran code for molecular dynamics simulations for a large number of particles", Computer Physics Communications, vol. 55, pp. 269-285, 1989.
    [26] H. Tsuzuki, P. S. Branicio, and J. P. Rino, "Structural characterization of deformed crystals by analysis of common atomic neighborhood," Computer Physics Communications, vol. 177, pp. 518-523, 2007.
    [27] J. A. Zimmerman, C. L. Kelchner, P. A. Klein, J. C. Hamilton, and S. M. Foiles, "Surface step effects on nanoindentation," Physical Review Letters, vol. 87, p. 165507, 2001.

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE