| 研究生: |
蔡炳傑 Tsai, Ping-Chieh |
|---|---|
| 論文名稱: |
以圖形化藍寶石基板製作氮化銦鎵發光二極體 InGaN Light-Emitting Diodes Fabricated on Patterned Sapphire Substrates |
| 指導教授: |
蘇炎坤
Su, Yan-Kin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 發光二極體 、氮化銦鎵 、圖形化藍寶石基板 |
| 外文關鍵詞: | InGaN, patterned sapphire substrates, LED |
| 相關次數: | 點閱:116 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文我們使用藍寶石基板來製作圖形化之基板。一般而言,氮化鎵磊晶層通常是成長在藍寶石基板上,這是因為沒有適當的基板可供氮化鎵異質結構成長。由於氮化鎵磊晶層與藍寶石基板之間存在著不同的晶格常數與溫度膨脹係數,所以在氮化鎵磊晶層裏存在著許多的穿透差排,雖然利用低溫成長的氮化鎵或氮化鋁緩衝層可以改善氮化鎵磊晶層的結晶品質,但還是有109-1010 cm-2的穿透差排密度存在於氮化鎵磊晶層裏。
為了減少穿透差排密度,有許多的方法被提出,例如磊晶側向再成長、懸垂式磊晶層與圖形化藍寶石基板,相較於磊晶側向再成長方式,利用有機金屬化學氣相沉積之圖形化藍寶石基板方法只需要一次磊晶成長,因此圖形化藍寶石基板方法應該更容易成長高品質的氮化鎵磊晶層。
我們利用一般的黃光及電感耦合式電漿蝕刻製程來製作圖形化藍寶石基板,並且以低壓之有機金屬化學氣相沉積法來成長有圖形化及沒圖形化藍寶石基板發光二極體。我們利用高解析度X光繞射光譜之半高寬與穿透式電子顯微鏡之影像來評估氮化鎵磊晶層的結晶品質,根據X光繞射光譜之半高寬與穿透式電子顯微鏡之照片顯示,圖形化藍寶石基板其氮化鎵磊晶層之穿透差排密度比不做圖形化藍寶石基板之穿透差排密度為低,這樣的結果說明我們可以利用圖形化藍寶石基板來改善氮化鎵磊晶層的結晶品質。此外可發現,圖形化藍寶石基板的電激發光光譜峰值強度與輸出功率比不做圖形化藍寶石基板分別大於34.4%與26%,藉由改善結晶品質與圖形化基板所散射的光,可增加發光二極體的輸出功率。當發光二極體操作在室溫及順向電流20 mA時,對於六角形圖案之基板其輸出功率與外部量子效率是11.24 mW與20.85%,長條狀圖案之基板為11.02 mW與20.44%,而沒有圖形化之基板為8.89 mW與16.49%。而在壽命測試方面,連續測試208小時後,有圖形化與沒有圖形化之藍寶石基板其輸出功率分別減少27.5%與41.8%。此外,比起不做圖形化之藍寶石基板,有圖形化之藍寶石基板其接面溫度與熱阻抗較小。
In this thesis, we have fabricated the pattern on substrate by using sapphire substrate. In generally, the GaN epilayers are usually grown on the sapphire substrate, because there is no large substrate available for GaN heterostructure growth. Due to the large differences in the lattice constant and thermal expansion coefficient between GaN epitaxials and sapphire substrate, numerous threading dislocations are induced in the GaN epilayers. Although the introduction of low temperature GaN or AlN buffer layer can significantly improve the crystal quality of the GaN epitaxial layer. The threading dislocation density has been reported to be of the order of 109-1010 cm-2 in the GaN epitaxial layer.
In order to reduce the dislocation density, there are many methods to be reported such as epitaxial lateral overgrowth (ELOG), pendeoepitaxy (PE) and patterned sapphire substrate (PSS). It shall be noted that one only need to perform metalorganic chemical vapor deposition (MOCVD) growth once in the PSS, as compare to twice in ELOG. Thus, it shall be easier to grow high quality GaN epilayers on the PSS, as compare to perform ELOG.
The PSS structure was fabricated by using standard photolithography and inductively coupled plasma. The growth of PSS and NSS LEDs were carried out using a low-pressure MOCVD. The crystal quality of GaN epilayer was estimated from full-width at half-maximum (FWHM) high-resolution X-ray diffraction (HRXRD) and transmission electron microscopy (TEM). According to FWHM of HRXRD and TEM micrographs, the dislocation densities of GaN epilayer grown on the PSS were lower than that of on the NSS. Such a result indicates that we could improve crystal quality of GaN epilayer by using PSS. It was found that the EL peak intensity and output power of PSS were about 34.4% and 26% larger than that of NSS, respectively. The increase in the output power was achieved by improving the crystal quality and scattering emission light from pattern. When the LEDs was operated at a forward current of 20 mA at room temperature, the output power and the external quantum efficiency were estimated to be 11.24 mW and 20.85% for hexagonal pattern , 11.02 mW and 20.44% for striped pattern, and 8.89 mW and 16.49% for without pattern, respectively. The output intensities decayed by 27.5% and 41.8% after 208 hrs burn-in for PSS and NSS, respectively. In addition, the PSS owns smaller junction temperature and thermal resistance compare with the NSS.
[1] H. P. Maruska, and J. J. Tietjen, “The preparation and properties of vapour-deposited single-crystal-line GaN” Appl. Phys. Lett. 15, 327 (1969)
[2] J. I. Pankove, E. A. Miller, D. Richman and J. E. Berkeyheiser, “Electroluminescence in GaN” J. Luminescence 4, 63 (1971)
[3] H. P. Maruska, W. C. Rhines, and D. A. Stevenson, “Preparation of Mg-doped GaN diodes exhibiting violet electroluminescence” Mat. Res. Bull. 7, 777 (1972)
[4] H. Amano, M. Kito, K. Hiramatsu, and I.Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)” Jpn. J. Appl. Phys. 28, L2112 (1989)
[5] S. Nakamura, N. Iwasa, and M. Senoh, “Method of manufacturing p-type compound semiconductor” US patent 5, 306, 662 (1994)
[6] I. Akasaki, H. Amano, K. Itoh, N, Koide, and K. Manabe, “GaN based UV/blue light-emitting devices” GaAs and Related Compounds conference, Inst. Phys. Conf. Ser. 129, 851 (1992)
[7] Dongjin Byun, Gyeungho Kim, Dongsup Lim, Dokyol Lee, In-Hoon Choi, Dalkeun Park, and Dong-Wha Kum, “Optimization of the GaN-buffer growth on 6H-SiC (0001)” Thin Solid Films 289, 256 (1996)
[8] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, and T. Taguchi, “High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy” Phys. Stat. Sol. (a) 188, No. 1, 121 (2001)
[9] Takashi Mukai, Motokazu Yamada, and Shuji Nakamura, “Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes” Jpn. J. Appl. Phys. 38, 3976 (1999)
[10] Tetsu Kachi, Kazuyoshi Tomita, Kenji Itoh, and Hiroshi Tadano, “A new buffer layer for high quality GaN growth by metalorganic vapor phase epitaxy” Appl. Phys. Lett. 72, 704 (1998)
[11] Isao Kidoguchi, Akihiko Ishibashi, Gaku Sugahara, and Yuzaburoh Ban, “Air-bridged lateral epitaxial overgrowth of GaN thin films” Appl. Phys. Lett. 76, 3768 (2000)
[12] S. Haffouz, A. Grzegorczyk, P. R. Hageman, P. Vennéguës, E. W. J. M. van der Drift, and P. K. Larsen, “Structural properties of maskless epitaxial lateral overgrown MOCVD GaN layers on Si (111) substrates” J. Crystal Growth 248, 568 (2003)
[13] Ig-Hyeon Kim, C. Sone, Ok-Hyun Nam, Yong-Jo Park, and Taeil Kim, “Crystal tilting in GaN grown by pendoepitaxy method on sapphire substrate” Appl. Phys. Lett. 75, 4109 (1999)
[14] Young-Bae Lee, Tao Wang, Yu-Huai Liu, Jin-Ping Ao, Yuji Izumi, Yves Lacroix, Hong-Dong Li, Jie Bai, Yoshiki Naoi, and Shiro Sakai, “High-Performance 348 nm AlGaN/GaN-Based Ultraviolet-Light-Emitting Diode with a SiN Buffer Layer” Jpn. J. Appl. Phys. 41, 4450 (2002)
[15] Shuji Nakamura, Masayuki Senoh, Shin-ichi Nagahama, Naruhito Iwasa, Takao Yamada, Toshio Matsushita, Hiroyuki Kiyoku, Yasunobu Sugimoto, Tokuya Kozaki, Hitoshi Umemoto, Masahiko Sano, and Kazuyuki Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate” Appl. Phys. Lett. 72, 211 (1998)
[16] Masaru Kuramoto, Chiaki Sasaoka, Yukihiro Hisanaga, Akitaka Kimura, A. Atsushi Yamaguchi, Haruo Sunakawa, Naotaka Kuroda, Masaaki Nido, Akira Usui, and Masashi Mizuta, “Room-Temperature Continuous-Wave Operation of InGaN Multi-Quantum-Well Laser Diodes Grown on an n-GaN Substrate with a Backside n-Contact” Jpn. J. Appl. Phys. 38, L184 (1999)
[17] Isao Kidoguchi, Akihiko Ishibashi, Gaku Sugahara, and Yuzaburoh Ban, “Air-bridged lateral epitaxial overgrowth of GaN thin films” Appl. Phys. Lett. 76, 3768 (2000)
[18] Akihiko Ishibashi, Isao Kidoguchi, Gaku Sugahara, and Yuzaburoh Ban, “High-quality GaN films obtained by air-bridged lateral epitaxial growth” J. Crystal Growth 221, 338 (2000)
[19] Yasutoshi Kawaguchi, Gaku Sugahara, Atsunori Mochida, Toshitaka Shimamoto, Akihiko Ishibashi, and Toshiya Yokogawa, “Low-dislocation density AlGaN layer by air-bridged lateral epitaxial growth” Phys. Stat. Sol. (c) 7, 2107 (2003)
[20] Ig-Hyeon Kim, C. Sone, Ok-Hyun Nam, Yong-Jo Park, and Taeil Kim, “Crystal tilting in GaN grown by pendoepitaxy method on sapphire substrate” Appl. Phys. Lett. 75, 4109 (1999)
[21] S. Einfeldt, A. M. Roskowski, E. A. Preble, and R. F. Davis, “Strain and crystallographic tilt in uncoalesced GaN layers grown by maskless pendoepitaxy” Appl. Phys. Lett. 80, 953 (2002)
[22] R. I. Barabash, G. E. Ice, W. Liu, S. Einfeldt, A. M. Roskowski, and R. F. Davis, “Local strain, defects, and crystallographic tilt in GaN(0001) layers grown by maskless pendeo-epitaxy from x-ray microdiffraction” J. Appl. Phys. 97, 1 (2005)
[23] Tsvetanks S. Zheleva, Scott A. Smith, Darren B. Thomson, Thomas Gehrke, Kevin J. Linthicum, Pradeep Rajagopal, Eric Carlson, Waeil M. Ashmawi, and Robert F. Davis, “Pendeo-Epitaxy – A New Approach Lateral Growth of Gallium Nitride Structures” MRS Internet J. Nitride Semicond. Res. 4S1, G3.38 (1999)
[24] S. Haffouz, A. Grzegorczyk, P. R. Hageman, P. Vennéguës, E. W. J. M. van der Drift, and P. K. Larsen, “Structural properties of maskless epitaxial lateral overgrown MOCVD GaN layers on Si (111) substrates” J. Crystal Growth 248, 568 (2003)
[25] T. M. Katona, P. Cantu, S. Keller, Y. Wu, J. S. Speck, and S. P. DenBaars, “Maskless lateral epitaxial overgrowth of high-aluminum-content AlxGa1-xN” Appl. Phys. Lett. 84, 5025 (2004)
[26] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, and T. Taguchi, “High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy” Phys. Stat. Sol. (a) 188, No. 1, 121 (2001)
[27] S. J. Chang, Y. K. Su, Y. C. Lin, R. W. Chuang, C. S. Chang, J. K. Sheu, T. C. Wen, S. C. Shei, C. W. Kuo, and D. H. Fang, “MOCVD growth of InGaN/GaN blue light emitting diodes on patterned sapphire substrates” Phys. Stat. Sol. (c) 0, No. 7, 2253 (2003)
[28] Motokazu Yamada, Tomotsugu Mitani, Yukio Narukawa, Shuji Shioji, Isamu Niki, Shinya Sonobe, Kouichiro Deguchi, Masahiko Sano, and Takashi Mikai, “InGaN-Based Near-Ultraviolet and Blue-Light-Emitting Diodes with High External Quantum Efficiency Using a Patterned Sapphire Substrate and a Mesh Electrode” Jpn. J. Appl. Phys. 41, L1431 (2002)
[29] Heon Lee, David B. Oberman, and James S. Harris, Jr. “Reactive ion etching of GaN using CHF3/Ar and C2ClF5/Ar plasmas” Appl. Phys. Lett. 67, 1754 (1995)
[30] R. J. Shul, S. P. Kilcoyne, M. Hagerott Crawford, J. E. Parmeter, C. B. Vartuli, C. R. Abernathy, and S. J, Pearton, “High temperature electron cyclotron resonance etching of GaN, InN, and AlN” Appl. Phys. Lett. 66, 1761 (1995)
[31] I. Adeside, A. Mahajan, E. Andideh, M. Asif Khan, D. T. Olsen, and J. N. Kuznia, “Reactive ion etching of gallium nitride in silicon tetrachloride plasma” Appl. Phys. Lett. 63, 2777 (1993)
[32] S. J. Pearton, F. Ren, T. F. Fullowan, J. R. Lothian, A. Katz, R. F. Kopf, and C. R. Abernathy, “ⅢⅤ semiconductor device dry etching using ECR discharges” Plasma Sources Sci. Technol. 1, 18 (1992)
[33] 莊達人 “VLSI製造技術” 一版 269 (1998)
[34] A. A. Bright, S. Kaushik, and G. S. Oehrlein, “Plasma chemical aspects of magnetron ion etching with CF4/O2” J. Appl. Phys. 62, 2518 (1987)
[35] S. J. Pearton, C. R. Abernathy, and F. Ren, “Low bias electron cyclotron resonance plasma etching of GaN, AlN, and InN” Appl. Phys. Lett. 64, 2294 (1993)
[36] S. A. Smith, C. A. Wolden, M. D. Bremser, A. D. Hanser, R. F. Davis, and W. V. Lampert, “High rate and selective etching of GaN, AlGaN, and AlN using an inductively coupled plasma” Appl. Phys. Lett. 71, 3631 (1997)
[37] R. J. Shul, G. B. McClellan, S. J. Pearton, C. R. Abernathy, C. Constantine, and C. Barratt, “Comparison of dry etch techniques for GaN” Electronics Lett. 32, 1408 (1996)
[38] R. J. Shul, G. A. Vawter, C. G. Willison, M. M. Bridges, J. W. Lee, S. J. Pearton, and C. R. Abernathy, “Comparison of plasma etch techniques for Ⅲ–Ⅴ Nitrides” Solid-State Electronics 42, 2259 (1998)
[39] Kelvin Shih, “LED Junction Temperature Test Unit–Operating Manual” Acorn Technology (2003)
[40] Agilent Technologies, Application Note 1005 (1999)
[41] Mitsuo Fukuda, “Reliability and Degradation of Semiconductor Lasers and LEDs” Boston, Artech House (1991)
[42] Bede Scientific Instruments Limited “D1 System User’s Manual” UK, (2002)
[43] Seong-Eun Park, Sung-Mook Lim, Cheul-Ro Lee, Chang Soo Kim, and Byungsung O, “Influence of SiN buffer layer in GaN epilayers” J. Crystal Growth 249, 487 (2003)
[44] D. Kotchetkov, J. Zou, A. A. Balandin, D. I. Florescu, and Fred H. Pollak, “Effect of dislocations on thermal conductivity of GaN layers” Appl. Phys. Lett. 79, 4316 (2001)