簡易檢索 / 詳目顯示

研究生: 賴冠儒
Lai, Guan-Ru,
論文名稱: 加權一般概似比管制圖對非常態分配穩健性研究
A Study about Robustness of Weighted GLR Control Chart to Non-Normal Process
指導教授: 胡政宏
Hu, Cheng-Hong
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 60
中文關鍵詞: 指數加權移動平均管制圖一般概似比管制圖累積和管制圖平均監控時間
外文關鍵詞: generalized likelihood ratio control chart, exponentially weighted moving average control chart, cumulative sum control chart, average time to signal
相關次數: 點閱:151下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 統計製程管制(Statistical Process Control,SPC)常被用於做為製程改善的工具,其透過持續監控製程之手法,若製程發生變異,管制圖會在最短時間內發出警訊,使用者須採取必要行動,找出變異並使製程儘快回到穩定狀態。常見管制圖包含蕭華特、累積和以及指數加權移動平均管制圖等,而一般概似比(Generalized Likelihood Ratio,GLR)管制圖也在近年開始受到學者們的關注。
    Reynolds and Lou (2010)提出一般概似比管制圖在常態分配時,使用者可選擇作者提供之管制界限達到特定的管制圖績效表現,且作者證明其能有效監控製程廣泛的偏移。過往一般概似比管制圖研究中大多假設製程參數已知且服從常態分配,即使製程不為常態,只要增加樣本數最終製程也會趨近於常態分配,但在現實中增加樣本數同時也增加使用者的成本,若在小樣本抽樣且製程與常態假設不符的情況時,將會使得管制圖發出警訊的頻率與預期的不符,增加在後續使用上的困難度。指數加權移動平均(Exponentially Weighted Moving Average,EWMA)管制圖被認為有著對非常態資料的穩健性(Non-Normality Robustness),其被認定可有效改善管制圖在製程不為常態分配的績效表現,本研究將應用指數加權移動平均中的加權方法,透過對管制圖統計量做加權的方式,改善管制圖在製程資料與常態不符的情形,並以平均監控時間(Average Time to Signal,ATS)為績效指標,和過去學者所提出之指數加權移動平均以及累積和管制圖比較在製程資料改變時管制圖的績效表現。

    Normal distribution has been widely assumed while using control chart. GLR (Generalized Likelihood Ratio, GLR) control chart is considered that can be very sensitive to different shift occurred in process. Prior researches have showed that the underlying data disobey the normal assumption that partitioners assumed, the performance of control chart would deteriorate.
    EWMA (Exponentially Weighted Moving Average, EWMA) control chart can be robust to non-normal by weighting statistics of samples. Owing to the deteriorated effect caused by non-normal data, statistics of GLR control chart will be weighted to achieve robust to improve the change of underlying data. By doing so, GLR control chart can perform more effective than EWMA and CUSUM control chart when normal assumption is disobeyed.

    摘要 I 誌謝 X 目錄 XI 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 文獻探討 3 1.4 研究目的 12 1.5 研究流程 13 1.6 論文架構 13 第二章 管制圖建構方法 15 2.1 符號定義 15 2.2 研究假設 16 2.3 管制圖建構 17 2.4 問題描述 20 2.5 小結 21 第三章 管制圖在管制內績效表現 22 3.1 績效指標 22 3.2 模擬步驟 23 3.3 數值實例 24 3.4 管制圖之管制界限 30 3.5 小結 35 第四章 管制圖在管制外績效表現 36 4.1 績效指標 36 4.2 模擬步驟 37 4.3 數值實例 38 4.4 小結 48 第五章 數值分析與比較 49 5.1 累積和管制圖 49 5.2 指數加權移動平均管制圖 50 5.3 數值實例 51 5.4 小結 55 第六章 結論與未來發展 56 6.1 研究結論 56 6.2 未來研究方向 57 參考文獻 58

    中文文獻:
    [1] 周紹宇&鄭炳宏,非常態性資料之全距管制圖(1997),工業工程學刊,14(4),401-409.
    英文文獻:
    [1] Bagshaw, M., & Johnson, R. A. (1975). The Influence of Reference Values and Estimated Variance on the ARL of CUSUM Tests. Journal of the Royal Statistical Society, 37(3), 413-420.
    [2] Borror, C. M., Montgomery, D. C. & Runger, G. (1999). Robustness of the EWMA Control Chart to Non-normality. Journal of Quality Technology, 31(3), 309.
    [3] Crowder, S. V. (1987). A Simple Method for Studying Run Length Distributions of Exponentially Weighted Moving Average Control Charts. Technometrics, 29, 401-407.
    [4] Human, S. W., Kritzinger, P., & Chakraborti, S. (2011). Robustness of the EWMA Control Chart for Individual Observations. Journal of Applied Statistics, 38(10), 2071-2087
    [5] Levinson, W. A. (1997). Watch out for Nonnormal Distributions of Impurities. Chemical Engineering Progress, 93(5), 70-76.
    [6] Lorden, G. (1971). Procedures for Reacting to a Change in Distribution. The Annuals of Mathematics Statistics, 42(6), 1897-1908.
    [7] Lucas, J. M., & Saccucci, M. S. (1990). Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements. Technometrics, 32(1), 1-12.
    [8] Maravelakis, P. E., Panaretos, J., & Psarakis, S. (2005). An Examination of the Robustness to Non Normality of the EWMA Control Charts for the Dispersion. Communication in Statistics – Simulation and Computation, 34(4), 1069-1079.
    [9] Moustakides, G. V. (1986). Optimal Stopping Times for Detecting Changes in Distritubions. The Annals of Statistics, 14(4), 1379-1387.
    [10] Page, E. S. (1954). Continuous Inspection Schemes. Biometrika, 41, 100-115.
    [11] Reynolds, M. R., Jr., & Lou, J. (2010). An Evaluation of a GLR Control Chart for Monitoring the Process Mean. Journal of Quality Technology, 42(3), 287–310.
    [12] Reynolds, M. R., Jr., Lou, J., Lee, J., & Wang, S. (2013). The Design of GLR Control Chart for Monitoring the Process Mean and Variance. Journal of Quality Technology, 45(1), 34-60.
    [13] Reynolds, M. R., Jr. & Stoumbos, Z. G. (2004). Control Charts and the Efficient Allocation of Sampling Resources.Technometrics, 46(2), 200-214.
    [14] Reynolds, M. R., Jr. &Stoumbos, Z. G. (2010). Robustness CUSUM Charts for Monitoring the Process Mean and Variance. Quality and Reliability Engineering International, 26, 453-473.
    [15] Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technometrics, 1(3), 239-250.
    [16] Robinson, P. B., & Ho, T. Y. (1978). Average Run Lengths of Geometric Moving Average Charts by Numerical Methods. Technometrics, 20, 85-93.
    [17] Shewhart, W. A. (1931). Economic control of quality of manufactured product. ASQ Quality Press.
    [18] Shiau, J. J. H., & Hsu, Y. C. (2005) Robustness of the EWMA Control Chart to Non-normality for Autocorrelated Processes, Quality Technology & Quantitative Management, 2(2), 125-146.
    [19] Shokrizadeh, R., Saghaei, A. & Yaqubinejad, Y. (2016). An Evaluation of an Adaptive Generalized Likelihood Ratio Charts for Monitoring the Process Mean. International Journal of Applied Operational Research, 6(3), 59-68.
    [20] Stoumbos, Z. G. B., & Reynolds, M. R. Jr. (2000). Robustness to Non-normality and Autocorrelation of Individuals Control Chart. Journal of Statistical Computation and Simulation, 66(2), 145-187.
    [21] Stoumbos, Z. G., & Sullivan, J. H., (2002). Robustness to Non-normality of the Multivariate EWMA Control Chart. Journal of Quality Technology, 34(3), 260.
    [22] Tagaras, G. (1998). A Survey of Recent Development in the Design of Adaptive Control Charts. Journal of Quality Technology, 30(3), 212-231.
    [23] Testik, M. C., Runger, G. C., & Borror, C. M. (2003). Robustness Properties of Multivariate EWMA Control Chart. Quality and Reliability Engineering International, 19, 31-38.
    [24] Wang, S., & Reynolds, M. R., Jr. (2013). A GLR Control Chart for Monitoring the Mean Vector of a Multivariate Normal Process. Journal of Quality Technology, 45(1), 18-33.
    [25] Willsky, A. S., & Jones, H. L. (1976). A Generalized Likelihood Ratio Approach to the Detection and Estimation of Jumps on Linear Systems. IEEE Transactions on Automatic Control, 21, 108-112.
    [26] Wu, Z., Yang, M., Jiang, W., & Khoo, M. B. C. (2008). Optimization Designs of the Combined Shewhart-CUSUM Control Charts. Computational Statistics and Data Analysis, 53, 496-506.
    [27] Xu, L., Wang, S. & Reynolds, M. R. Jr. (2013). A Generalized Likelihood Ratio Control Chart for Monitoring the Process Mean Subject to Linear Drifts. Quality and Reliability Engineering International, 29, 545-553.
    [28] Yourstone, S. A. & Zimmer, W. J. (1992). Non-Normality and the Design of Control Charts for Averages. Decision Sciences, 23, 1099-1113.
    [29] Zhang, J., Li, Z., & Wang, Z. (2012). A New Adaptive Control Chart for Monitoring Process Mean and Variability. The International Journal of Advanced Manufacturing Technology, 60, 1031-1038.
    [30] Zhang, J., Li, Z., & Wang, Z. (2010). A Multivariate Control Chart for Simultaneously Monitoring Process Mean and Variability. Computational Statistics and Data Analysis, 54, 2244-2252.
    [31] Zhao, Y., Tsung, F., & Wang, Z. (2005). Dual CUSUM Control Schemes for Detecting a Range of Mean Shifts. IIE Transactions, 37(11), 1047-1057.
    [32] Zhang, J., Zou, C., & Wang, Z. (2010). A Control Chart Based on Likelihood Ratio Test for Monitoring Process Mean and Variability. Quality and Reliability Engineering International, 26, 63-73.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE