| 研究生: |
蔡至瑋 Tsai, Chih-Wei |
|---|---|
| 論文名稱: |
企業淨零碳排與措施規劃-以製造業公司為例 Carbon net zero and reduction initiatives planning for manufacturing companies |
| 指導教授: |
張行道
Chang, Andrew Shing-Tao 洪崇展 Hung, Chung-Chan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 淨零碳排 、減碳措施 、三軸評級架構 、技術成熟度 、製造業 |
| 外文關鍵詞: | Net zero carbon emissions, carbon reduction initiatives, three-dimensional evaluation framework, technology maturity, manufacturing |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因應國際淨零碳排趨勢及政府之規定,企業需提出淨零路徑並採取減碳措施,以達減碳目標。然而目前尚缺乏系統性的方法,去評估、找出適合的減碳措施,供企業規劃減碳策略時選擇、採用。
本研究提出製造業減碳措施分類、評級架構,目的為建立一套合理的流程,協助企業採用適合的減碳措施。首先回顧政府/機構公佈的製造業節能減碳計畫、6家製造業企業永續報告書、16篇國際文獻,找出減碳措施。接著建立措施分類架構,依碳排來源不同分為製程改善、能源轉換、循環經濟三類,依不同範疇區分成經營管理與產品生產兩類,將找出的措施彙整、納入。接著提出三軸評級架構,將措施分別針對減碳量、成本、技術成熟度三個面向評級,根據評級結果篩選出適合企業採用的減碳措施。最後,依公司碳排熱點分析結果,選出適用的減碳措施。
研究結果顯示,找出的措施中,製程改善、能源轉換、循環經濟類措施數量分別為10、2、5個。製程改善類含蓋範圍廣,項目多樣,數量最多。能源轉換類實施難度高、周期長,種類有限,數量最少。循環經濟類多在發展當中,技術成熟度不如其他兩類。
措施評級結果,減碳量面相分布較M型化,評級為高、中、低的措施分別有7、3、7個。成本面向的措施分布較平均,高(6個)、中(6個)、低(5個)成本的數量相近。措施技術成熟度評級為高與中的量數分別為10、7個,被提出的措施多成熟度較高。
最後,本研究針對案例公司碳排熱點,從彙整得的措施中選出8項適合執行的,經營管理和產品生產類措施數皆為4個;製程改善、能源轉換、循環經濟類措施數分別為5、2、1個。減碳量與技術成熟度的平均得點較高,顯示所選措施有效、可行,成本類的平均得點偏低,表示措施的實施需要成本。若公司採用此8項措施,雖然需投入成本,但可望有減碳效果。
In response to the global trend toward net-zero carbon emissions and under governmental regulations, companies formulate net-zero roadmaps and execute carbon reduction initiatives. Nevertheless, systematic approaches for evaluating and selecting carbon reduction initiatives are still insufficient.
This study proposes a systematic approach for selecting carbon reduction initiatives. The identification of initiatives was based on government documents, ESG reports from 6 manufacturing companies, and 16 international academic publications. A classification organizes these initiatives by emission sources into process improvement, energy transition, and circular economy, and divided into management- and production-related groups based on direct and indirect emissions. Subsequently, a three-dimensional evaluation framework was developed to assess carbon reduction potential, cost, and technological maturity, to identify feasible initiatives. Ultimately, appropriate initiatives were determined based on the carbon emission hotspots for companies.
The study identified 17 initiatives: 10 in process improvement, 2 in energy transition, and 5 in circular economy. Process improvements were the most diverse and broadly applicable. Energy transition faced high implementation barriers and longer time. Circular economy initiatives showed lower technological maturity. In the evaluation, 7 initiatives had high, 3 medium, and 7 low carbon reduction potential. In cost were rated as 6 high, 6 medium, and 5 low. Technological maturity was mostly high (10) and medium (7).
For a case company, 8 initiatives were identified based on emission hotspots. These initiatives were scored high in reduction potential and technological maturity, but low in cost. These findings suggest that despite associated costs, successful carbon reduction is highly probable.
1. Abdul-Rashid, S. H., Sakundarini, N., Ghazilla, R. A. R. and Thurasamy, R. (2017). “The impact of sustainable manufacturing practices on sustainability performance: Empirical evidence from Malaysia.” International Journal of Operations & Production Management, 37(2), 182-204.
2. Acuff, K. and Kaffine, D. (2015). “Greenhouse gas emissions, waste and recycling policy.” Journal of Environmental Economics and Management, Volume 65, Issue 1, Pages 74-86.
3. Adil, M., Fazel-e-Hasan, S. M., Ahmadi, H., Sadiq, M., Sekhon, H. and Amrollahi, A. (2025). “Fostering Managers’ Hope: A Multi-analysis Perspective on How Green Initiatives Drive Organizational Performance.” Journal of Cleaner Production, Volume 496, 145165.
4. Akintayo, B., Akintayo, D. and Olanrewaju, O. (2023). “Material Substitution Strategies for Energy Reduction and Greenhouse Gas Emission in Cement Manufacturing.” Atmosphere, 14(8), 1200.
5. Alaux, N., Ruschi Mendes Saade, M. and Passer, A. (2024). “Inventory regionalization of background data: Influence on building life cycle assessment and carbon reduction strategies.” Journal of Cleaner Production, Vol. 459, 142434.
6. Anand, S., Barua, M. K., Katiyar, R. and Meet, R. K. (2024). “Minimizing waste, maximizing sustainability: Analyzing collaborative practices implementation barriers in the agri-fresh produce industry.” Sustainable Futures, Volume 8, 100398.
7. Aquatech (20223). “30 technologies for the circular economy.” https://www. aquatechtrade.com/news/circular-economy/30-technologies-for-the-circular-economy? utm_source=chatgpt.com, accessed on June, 26, 2025.
8. Attwood, J. (2023). “Green Steel Demand is Rising Faster Than Production Can Ramp Up.” BloombergNEF, https://about.bnef.com/insights/finance/green-steel-demand-is-rising-faster-than-production-can-ramp-up/, accessed on June, 5, 2025.
9. Bahtić, F. (2024). “SCC: Emissions will skyrocket without urgent action from shipping industry.” Offshore Energy, https://www.offshore-energy.biz/scc-emissions-will-skyrocket-without-urgent-action-from-shipping-industry/?utm_source=chatgpt.com, accessed on Jun., 1, 2025.
10. Bamisile, O., Cai, D., Adun, H., Dagbasi, M., Ukwuoma, C. C., Qi, H., Johnson, N. and Bamisile, O. (2024). “Towards renewables development: Review of optimization techniques for energy storage and hybrid renewable energy systems.” Heliyon, Volume 10, Issue 19, e37482.
11. European Environment Agency (EEA) (2021). “Better raw material sourcing can significantly reduce greenhouse gas emissions.” https://www.eea.europa.eu/highlights/ better-raw-material-sourcing-can, accessed on May, 27, 2025.
12. Budinis, S., Krevor, S., MacDowell, N., Brandon, N. and Hawkes, A. (2018). “An assessment of CCS costs, barriers and potential.” Energy Strategy Reviews, Volume 22, Pages 61-81.
13. Chang, A. S., Canelas, C. and Chen, Y. L. (2021). “Relationships between Environmental Initiatives and Impact Reductions for Construction Companies.” Sustainability, 13(14), 8061.
14. Circular economy: definition, importance and benefits. (2023). European Parliament, https://www.europarl.europa.eu/topics/en/article/20151201STO05603/circular-economy- definition-importance-and-benefits, accessed on June 18, 2025.
15. Climate Change 2021: The Physical Science Basis. (2021). The Intergovernmental Panel on Climate Change (IPCC), https://www.ipcc.ch/report/ar6/wg1/, accessed on June 18, 2025.
16. CO2 Capture and Utilisation. (2021). Net Zero by 2050: A Roadmap for the Global Energy Sector, International Energy Agency, Paris.
17. CO2 Emissions in 2022. (2023). International Energy Agency (IEA), https://iea.blob.core.windows.net/assets/3c8fa115-35c4-4474-b237-1b00424c8844/ CO2Emissionsin2022.pdf, accessed on June 11, 2025.
18. Cole, W. and Karmakar, A. (2023). “Cost Projections for Utility-Scale Battery Storage: 2023 Update.” US National Renewable Energy Laboratory, https://docs.nrel.gov/docs/ fy23osti/85332.pdf, accessed on June, 8, 2025.
19. Constantin, D. M., Topor, D. I., Căpușneanu, S., Türkeș, M. C. and Anghel, M. G. (2019). Green Reporting and Its Impact on Business Strategy (pp. 91–109). https://doi. org/10.4018/978-1-5225-8455-1.ch006, accessed on May, 29, 2025.
20. Daniel Budiman, S. and Hsu, H. (2025). “Energy portfolio optimization under variability for achieving Taiwan 2050 net-zero initiative” Renewable Energy, Volume 250, 123318.
21. DebRoy, T. and Elmer, J.W. (2024). “Metals beyond tomorrow: Balancing supply, demand, sustainability, substitution, and innovations.” Materials Today, Volume 80, Pages 737-757.
22. Deng, W., Meng, T., Kharuddin, S., Zariyawati Mohd, A. and Zhou, J. (2024). “The impact of renewable energy consumption, green technology innovation, and FDI on carbon emission intensity: Evidence from developed and developing countries.” Journal of Cleaner Production, Volume 483, 144310.
23. Dragomir, V. (2018). “How do we measure corporate environmental performance? A critical review.” Journal of Cleaner Production, Vol. 196, pp. 1124-1157.
24. EP100 (2016), EP100. https://www.theclimategroup.org/about-ep100, accessed on Feb. 10, 2025.
25. Ferdous, W., Manalo, A., Siddique, R., Mendis, P., Zhuge, Y., Wong, H. S., Lokuge, W., Aravinthan, T. and Schubel, P. (2021). “Recycling of landfill wastes (tyres, plastics and glass) in construction – A review on global waste generation, performance, application and future opportunities.” Resources, Conservation and Recycling, Volume 173, 105745.
26. Gailani, A., Cooper, S., Allen, A., Pimm, A., Taylor, P. and Gross, R. (2024). “Assessing the potential of decarbonization options for industrial sectors” Joule, Volume 8, Issue 3, Pages 576-603.
27. González-Romero, I., Buldeo Rai, H., Ortiz, Á. and Prado-Prado, J. C. (2024). “Can reusable packaging revolutionise e-commerce? Unveiling the environmental impact through a comparative carbon footprint analysis.” Journal of Cleaner Production, Volume 476, 143738.
28. GRI Standards (2021). Traditional Chinese GRI Consolidated Set of GRI Standards. GRI, Amsterdam.
29. Guerci, M., Longoni, A. and Luzzini, D. (2015). “Translating stakeholder pressures into environmental performance – the mediating role of green HRM practices.” The International Journal of Human Resource Management, 27(2), 262-289.
30. Hanson, E., Nwakile, C. and Hammed, V. O. (2025). “Carbon capture, utilization, and storage (CCUS) technologies: Evaluating the effectiveness of advanced CCUS solutions for reducing CO2 emissions.” Results in Surfaces and Interfaces, Volume 18, 100381.
31. Haque, F. (2017a). “Environmental Policy, Sustainable Development, Governance Mechanisms and Environmental Performance.” Business Strategy and the Environment, 27(3), 415-435.
32. Haque, F. (2017b). “The effects of board characteristics and sustainable compensationpolicy on carbon performance of UK firms.” The British Accounting Review, 49(3), 347-364.
33. How energy efficiency will power net zero climate goals (2021), International Energy Agency (IEA), https://www.iea.org/commentaries/how-energy-efficiency-will-power-net-zero-climate-goals, accessed on June, 10, 2025.
34. Hu, S., Cao, L., Shi, Y. and Wang, H. (2025). “Green Manufacturing Pioneers: Unveiling the Carbon Dioxide Emission Reduction Effect of China's Green Factories” Economic Analysis and Policy, https://doi.org/10.1016/j.eap.2025.02.016, accessed on Feb. 14, 2025.
35. Huang, S., Cheng, J. and Zheng, W., (2024). “The impacts of environmental benefit concern of enterprises on competitive supply chain economic and environmental benefits.” Applied Energy, Volume 374, 124016.
36. Huang, Y., Liu, C., Wang, L. and Qi, Y. (2025). “The Impact of environmental protection tax on corporate ESG performance and corporate green behavior.” Research in International Business and Finance, Volume 75, 102772.
37. Hussain, M., Ugo, R., and Orij, R. (2018). “Corporate Governance and Sustainability Performance: Analysis of Triple Bottom Line Performance.” J Bus Ethics, Vol. 149, pp. 411–432.
38. International Organization for Standardization (2018), ISO 14064-1 (2018) Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals, International Organization for Standardization (ISO), Geneva, Switzerland.
39. ISO 50001:2018 (2019). ISO 50001:2018 Energy management systems — Requirements with guidance for use. ISO, Genève, Switzerland.
40. Jena, M. C., Mishra, S. K. and Moharana, H. S. (2019). “Application of Industry 4.0 to enhance sustainable manufacturing.” Environmental Progress & Sustainable Energy, Volume39, Issue 1, 10.1002/ep.13360
41. Jensen, S. (2024). “SReduce Emissions Through New Materials and Production Methods.” Power & Motion, https://www.powermotiontech.com/hydraulics/ article/55142599/reduce-emissions-through-new-materials-and-production-methods, accessed on Jun., 10, 2025.
42. Kang, Y., Yun, B.Y. and Kim, S. (2025). “Energy and carbon reduction through green remodeling of daycare centers in Seoul.” Sustainable Energy Technologies and Assessments, Volume 74, 104163.
43. Karki, U. and Rao, P. (2023). “Techno-economic analysis of the water, energy, and greenhouse gas emissions impacts from the adoption of water efficiency practices in the U.S. manufacturing sector.” Resources, Conservation and Recycling, Volume 196, 107054.
44. Khalifa, A. A., Ibrahim, A.J., Amhamed, A.I. and El-Naas, M.H. (2022). “Accelerating the transition to a circular economy for net-zero emissions by 2050: a systematic review.” Sustainability, 14 (18) (2022), Article 11656.
45. Khalil, E. and AbouZeid, M. (2025). “A global assessment tool for cement plants improvement measures for the reduction of CO2 emissions.” Results in Engineering, Volume 26, 104767.
46. Kraus, S., Rehman, S. U. and Javier Sendra García, F. (2020). “Corporate social responsibility and environmental performance: The mediating role of environmental strategy and green innovation.” Technological Forecasting and Social Change, Volume 160, 120262.
47. Kurrahman, T., Tsai, F.M., Jeng, S.Y., Anthony, S.F., Wu, K.J., and Tseng, M. (2024). “Sustainable development performance in the semiconductor industry: A data-driven practical guide to strategic roadmapping.” Journal of Cleaner Production, Vol. 445, 141207.
48. Lam, H., How, B. and Hong, B. (2015). “Green supply chain toward sustainable industry development” Assessing and Measuring Environmental Impact and Sustainability, 2015, Pages 409-449.
49. LED (2025), Climate Group, https://www.theclimategroup.org/node/221, accessed on Apr. 5, 2025.
50. Li, S., Ngniatedema, T., and Chen, F. (2017). “Understanding the impact of greeninitiatives and green performance on financial performance in the US.” Business Strategy and the Environment, 26(6), 776-790.
51. Li, S., Xiang, N., Shu, C. and Xu, F. (2025). “Unveiling the industrial synergy optimization pathways in Beijing-Tianjin-Hebei urban agglomeration based on water-energy-carbon nexus.” Journal of Environmental Management, Volume 376, 124528.
52. Liêu, M., Dao, T., Nguyen, T. H. and Trinh, V. Q. (2024). “Climate governance and carbon risk in the global energy sector: Insights into corporate environmental initiatives.” Energy Economics, Volume 137, 107782.
53. Liu, X. and Yan, W. (2024). “Current advances in slag foaming processes toward reduced CO2 emission for electric arc furnace steelmaking.” Journal of CO2 Utilization, Volume 90, 102979.
54. Liu, Z., Du, S., Zhang, L., Xie, J. and Wang, X. (2025). “Does the coupling of digital and green technology innovation matter for carbon emissions?” Journal of Environmental Management, Volume 373, 123824.
55. Local Energy Efficiency Benefits and Opportunities. (2025), U.S. Environmental Protection Agency, https://www.epa.gov/statelocalenergy/local-energy-efficiency-benefits-and-opportunities, accessed on June, 10, 2025.
56. Madsen, H. and Ulhoi, J. P. (2014). “Corporate Environmental Initiatives in Small and Medium Sized Enterprises and Their Outcomes: A Longitudinal Study.” Business Strategy and the Environment, 25(2), 92-101.
57. Mardyana, R. and Mahata, G. C. (2024). “Impacts of dual carbon emission reduction technology and technology spillovers of deterioration reduction on supply chain system's performances considering government incentives and contract design.” Journal of Cleaner Production, Volume 468, 142977.
58. Maurer, E. (2010). “Achieving Radically Energy Efficient Retrofits: The Empire State Building Example.” ASHRAE Transactions, vol 116, part 2, 236-243.
59. Miranda, D., Bottorff, C. and Watts, R. (2024). “What Is Process Improvement?” Forbes, https://www.forbes.com/advisor/business/what-is-process-improvement/, accessed on June, 18, 2025.
60. Montabon, F., Sroufe, R. and Narasimhan, R. (2007). “An examination of corporate reporting, environmental management practices and firm performance.” Journal of Operations Management, 25(5), 998-1014.
61. Nagar, Y. (2024). “Cost to Develop A Factory Management Software.” Dev Technosys, https://devtechnosys.com/insights/develop-a-factory-management-software/, accessed on June, 5, 2025.
62. Nath, P. and Ramanathan, R. (2020). “Impact of Environmental Initiatives on Environmental Performances: Evidence From the UK Manufacturing Sector.” Encyclopedia of Renewable and Sustainable Materials, Vol. 5, pp. 408-413.
63. Onjewu, A. E., Jafari-Sadeghi, V., Kock, N., Haddoud, M. Y. and Sakka, G. (2023). “The catalyzing role of customer pressure on environmental initiatives and export intensity: A study of family firms.” Journal of Business Research, Volume 166, 114134.
64. Osman, A. I., Chen, L., Yang, M., Msigwa, G., Farghali, M., Fawzy, S., Rooney, D. W. and Yap, P. (2023). “Cost, environmental impact, and resilience of renewable energy under a changing climate: a review.” Environmental Chemistry Letters, Volume 21, pages 741–764.
65. Paluš, H., Parobek, J., Slašt’anová, N., Nosál’ová, M., Loučanová, E. and Brunori, A. (2024). “Green Supply Chains and Their Influence on the Competitiveness and Economic Performance of Companies.” SAGE Open, https://doi.org/10.1177/ 21582440241271070, accessed on May, 27, 2025.
66. Panjaitan, T. W. S., Dargusch, P., Wadley, D. and Aziz, A. A. (2023). “A study of management decisions to adopt emission reduction measures in heavy industry in an emerging economy.” Scientific Reports, Article number: 1413.
67. Paris Agreement (2015), the 21st Conference of the Parties to the United Nations Framework Convention on Climate Change(COP 21), Paris.
68. Peng, B., Tua, Y., Elahi, E., and Guo, W. (2018). “Extended Producer Responsibility and corporate performance: Effects of environmental regulation and environmental strategy.” Journal of Environmental Management, Vol. 218, pp. 181-189.
69. Przybyla, G. and Cézar Nadaleti, W. (2023). “Emissions and efficiency of pure CO and H2-rich simulated gases combustion with peach and rice biomasses syngas characteristics: A renewable energy pathway for the agroindustrial sector in Rio Grande do Sul, Brazil.” Energy Conversion and Management, Volume 282, 116375.
70. Ramasamy, V., Zuboy, J., Woodhouse, M., O’Shaughnessy, E., Feldman, D., Desai, J., Walker, A., Margolis, R. and Basore, P. (2023). “U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks, With Minimum Sustainable Price Analysis: Q1 2023.” US National Renewable Energy Laboratory, https://docs.nrel.gov/docs/fy23osti/87303. pdf, accessed on June, 8, 2025.
71. RE100 (2014). RE100. https://www.there100.org/about-us, accessed on Feb. 10, 2025.
72. Rekker, L., Kesina, M. and Mulder, M. (2023). “Carbon abatement in the European chemical industry: assessing the feasibility of abatement technologies by estimating firm-level marginal abatement costs.” Energy Economics, Volume 126, 106889.
73. Rogelj, J., den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., Riahi, K. and Meinshausen, M. (2015). “Paris Agreement climate proposals need a boost to keep warming well below 2 °C.” Nature, Volume 534, pages631–639.
74. Rokhmawati, A., Sarasi, V. Aulia, A., Berampu, L. and Maulida, Y. (2025). “Simulation of Carbon Tax Impact on the Competitiveness of the Manufacturing Industry in Indonesia Using a System Dynamics Approach.” International Journal of Energy Economics and Policy, Vol. 15 No. 1, 90-102.
75. Sandberg, E. and Krook-Riekkola, A. (2022). “The impact of technology availability on the transition to net-zero industry in Sweden.” Journal of Cleaner Production, Volume 363, 132594.
76. Sax, S. (2024). “How Electric Bikes Can Cut Delivery Emissions in Cities.” Time, TIMECO₂ Futures, https://time.com/6836113/electric-bikes-decarbonize-last-mile-delivery/?utm_source=chatgpt.com, accessed on May, 30, 2025.
77. Sharm El-Sheikh Implementation Plan (2015), the 21st Conference of the Sharm el-Shaykh to the United Nations Framework Convention on Climate Change (COP 21), Sharm El-Shaykh, Egypt.
78. Sheikhtajian, S., Bagherinejad, J. and Mohammadi, E. (2024). “Investment in CCUS under technical uncertainty considering investor's risk aversion: An exotic compound real-options approach.” International Journal of Greenhouse Gas Control, Volume 138, 104241.
79. Sixth Assessment Report (2022), The Intergovernmental Panel on Climate Change, https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf, accessed on June 14, 2025.
80. Sloan, T. W. (2011). “Green renewal: incorporating environmental factors in equipment replacement decisions under technological change.” Journal of Cleaner Production, Volume 19, Issues 2–3, Pages 173-186.
81. Special Report: Global Warming of 1.5 ºC (2018), The Intergovernmental Panel on Climate Change, https://www.ipcc.ch/sr15/chapter/spm/, accessed on Feb. 27, 2025.
82. Stryker, C. (2024). “What is process improvement?” IBM, https://www.ibm.com/think/ topics/process-improvement, accessed on June, 18, 2025.
83. Sun, Y. (2024). “The impact of green buildings on CO2 emissions: Evidence from commercial and residential buildings.” Journal of Cleaner Production, Volume 469, 143168.
84. Sun, Y., Yan, C. and Xing, H. (2024). “Can green buildings reduce carbon dioxide emissions?” Energy, Volume 312, 133613.
85. Sustainable Development Goals (SDGs) (2015). Transforming Our World:the 2030 Agenda for Sustainable Development, United Nations Sustainable Development Summit, New York.
86. Tavasszy, L. (2024). “Decarbonization and freight transport planning” Advances in Transport Policy and Planning, Pages 117-148.
87. Taylor, J., Vithayathil, J. and Yim, D. (2018). “Are corporate social responsibility (CSR) initiatives such as sustainable development and environmental policies value enhancing or window dressing?” Corporate Social Responsibility and Environmental Management, 25(5), 971-980.
88. The Steel Science-Based Target-Setting Guidance (2023), Science Based Targets Intitiative (SBTi), https://files.sciencebasedtargets.org/production/files/SBTi-Steel-Guidance.pdf?dm=1734357616&_gl=1*1xn3ul5*_gcl_au*MTExNDU5NTQxNS4xNzUyNTQ5NDUy*_ga*MjcxOTY5MTAwLjE3NTI1NDk0NTI.*_ga_22VNHNTFT3*czE3NTI1NDk0NTEkbzEkZzEkdDE3NTI1NTA2NTUkajYwJGwwJGg1NzgyMjY2NTQ., accessed on July 15, 2025.
89. Tian, Y., Ou, L., Guo, J., Chen, Z. and Chen, Z. (2025). “A configuration of green and low-carbon strategy in clean energy economy: A perspective of supply chain management.” Energy, Volume 322, 135642.
90. Unegg, M. C., Steininger, K. W., Ramsauer, C. and Rivera-Aguilar, M. (2023). “Assessing the environmental impact of waste management: A comparative study of CO2 emissions with a focus on recycling and incineration.” Journal of Cleaner Production, Volume 415, 137745.
91. Wang, L., Han, J., Ma, F., Li, X. and Wang, D. (2023). “Accuracy design optimization of a CNC grinding machine towards low-carbon manufacturing.” Journal of Cleaner Production, Volume 406, 137100.
92. Wang, L., Shang, Y. and Li, C. (2023). “How to improve the initiative and effectiveness of enterprises to implement environmental management system certification?” Journal of Cleaner Production, Volume 404, 137013.
93. Wang, Q., Liu, M. and Zhang, B. (2022). “Do state-owned enterprises really have better environmental performance in China? Environmental regulation and corporate environmental strategies.” Resources, Conservation and Recycling, 185, 106-500.
94. What Is Business Management? (2025), Flokzu, https://flokzu.com/en/bpm/what-is-business-management/#:~:text=Business%20management%20is%20the%20overall% 20practice%20of,directing%2C%20and%20controlling%20resources%2C%20as%20described%20before., accessed on June 19, 2025.
95. What Is Production? (2025), Buske Logistics, https://www.buske.com/what-is/production, accessed on June 19, 2025.
96. Wheatcroft, E., Wynn, H., Lygnerud, K. and Bonvicini, G. (2019). “The role of low temperature waste heat recovery in achieving 2050 goals: a policy positioning paper.” arXiv, Vol. 1912.06558.
97. Wongkar, A. (2024). Analysis and Development of Net Zero Paths for Construction Firms, National Cheng Kung University Department of Civil Engineering Dissertations and Theses, Tainan, Taiwan.
98. World Energy Outlook 2024 (2024), International Energy Agency (IEA), https://www.iea.org/reports/world-energy-outlook-2024, accessed on Feb. 9, 2025.
99. Yang, D., Law, K. S. and Tang, G. (2023). “Not all pro-environmental initiatives can increase pro-environmental behavior: An empirical examination of employees’ pro-environmental attributions.” Journal of Environmental Psychology, Volume 92, 102177.
100. Yu, Y., Zhao, Q., Wang, T. and Gao, W. (2025). “Evaluating the carbon emission reduction effect of distributed energy system in 20 years: Experience from Kitakyushu Science and Research Park, Japan.” Energy and Buildings, Volume 337, 115615.
101. Zhang, L., Yuan, Y., Xi, J., Sun, J., Yan, S., Du, T. and Na, H. (2024). “Synergistic enhancement for energy-saving, emission reduction and profit improvement in iron and steel manufacturing system: Strategies for parameter regulation and technologies integration.” Energy Conversion and Management, Volume 322, 119101.
102. Zhang, Q., Iqbal, S. and Shahzad, F. (2024). “Role of environmental, social, and governance (ESG) investment and natural capital stocks in achieving net-zero carbon emission.” Journal of Cleaner Production, Volume 478, 143919.
103. Zhao, Y., Wang, S., Gao, G., Wu, Y. and Zhang, R. (2025). “Integrated optimization model to explore the green transformation of energy-intensive industrial parks from environmental-economic perspectives.” Energy, Volume 325, 136200.
1. DHL Express (2023),DHL國際快遞與奇美實業攜手以100%永續航空燃料運輸方案加速降低物流碳排放,https://www.dhl.com/tw-zh/home/press/press-archive/2023/102323.html,2025年6月10日上網資料。
2. 三星科技(2024),三星科技2024年永續報告書,三星科技股份有限公司,台南。
3. 久陽精密(2024),久陽精密2024年永續報告書,久陽精密股份有限公司,高雄。
4. 大道成物流(2025),中小企業部署TMS系统的成本與收益分析,大道成物流科技有限公司,福州。
5. 工業局(2022),製造部門2030年淨零轉型路徑,中華民國經濟部,台北。
6. 工研院(2023),淨零排放-淨零技術,https://www.itri.org.tw/ListStyle.aspx? DisplayStyle=01&SiteID=1&MmmID=1162127241645721235,2025年3月1日上網資料。
7. 工研院(2025),【能源管理減碳解決方案】提升儲能系統營運效率-虛擬電廠管理及儲能系統控制技術,https://www.itri.org.tw/ListStyle.aspx?DisplayStyle=01_ content&SiteID=1&MmmID=1162127241653213770&MGID=1216460520225636502,2025年5月31日上網資料。
8. 中鴻鋼鐵(2024),中鴻鋼鐵2024年永續報告書,中鴻鋼鐵股份有限公司,高雄。
9. 內政部建築研究所(2020),既有公有建築節能改善計畫成果報告書,行政院內政部建築研究所,台北。
10. 內政部建築研究所(2024),綠建築標章及建築能效標示,https://www.abri.gov.tw/cp.aspx?n=804,2025年4月16日上網資料。
11. 天下雜誌(2021),《天下雜誌第723期—兩千大調查》製造業資料整理,天下雜誌股份有限公司,台北。
12. 台北市政府(2022),臺北市淨零排放管理自治條例,台北市政府,台北。
13. 台積電(2025),氣候變遷與能源管理, https://esg.tsmc.com/csr/ch/focus/ greenManufacturing/climateChangeAndEnergy.html,2025年6月10日上網資料。
14. 吉陽能源科技(2025),「太陽能板屋頂划不划算,效益成本一次算給你!」,吉陽能源科技有限公司,高雄。
15. 宏遠興業(2023),宏遠興業2022年永續報告書,宏遠興業股份有限公司,台南。
16. 金融監督管理委員會(2023),上市櫃公司永續發展行動方案,行政院金融監督管理委員會,台北。
17. 恒耀國際(2024),恒耀國際2024年永續報告書,恒耀國際股份有限公司,台南。
18. 春雨工廠(2024),春雨工廠2024年永續報告書,春雨工廠股份有限公司,高雄。
19. 氣候變遷署(2025),第三期溫室氣體階段管制目標草案,行政院環境部,台北。
20. 能源署(2024),經濟部預告「中華民國一百十四年至一百十七年能源用戶訂定節約能源目標及執行計畫規定」草案 提高企業用電效率並推動深度節能,https://www.moea.gov.tw/MNS/populace/news/News.aspx?kind=1&menu_id=40&news_id=116207,2025年2月27日上網資料。
21. 國發會(2022a),12項關鍵戰略行動計畫,行政院國家發展委員會,台北。
22. 國發會(2022b),臺灣2050淨零排放路徑及策略總說明,行政院國家發展委員會,台北。
23. 張筱蓉(2015),綠道路指標對應之個案碳排放分析與認證策略,國立成功大學碩士論文。
24. 產發署(2022),第二期(110至114年)溫室氣體減量推動方案,中華民國經濟部,台北。
25. 產業節能減碳資訊網(2023),「製程改善 在做些什麼?」,https://ghg.tgpf.org.tw/ZeroKnowledge/ZeroKnowledge_more?id=96a36d9eb38d49ef8a049096620c47c7,2025年6月18日上網資料。
26. 陳奕潔(2024),營造業節能減碳措施資料庫建立,國立成功大學碩士論文。
27. 經濟日報(2023),製造業研發費用 逐年成長,聯合報股份有限公司,台北。
28. 經濟部(2023),經濟統計數據分系統:工廠校正-全年營業收入, https://service.moea. gov.tw/EE521/common/Common.aspx?code=G&no=6&utm_source=chatgpt.com,2025年5月28日上網資料。
29. 經濟部(2025),中華民國一百十四年至一百十七年能源用戶訂定節約能源目標及執行計畫,行政院經濟部,台北。
30. 經濟部(2025),製造部門減碳行動,行政院經濟部,台北。
31. 聚亨企業 (2024),聚亨企業2024年永續報告書,聚亨企業股份有限公司,高雄。
32. 環境部(2023a),氣候變遷因應法,行政院環境部,台北。
33. 環境部(2023b),第二期製造部門溫室氣體排放管制行動方案,行政院環境部,台北。
34. 環境部(2024a),2024年中華民國國家溫室氣體排放清冊報告,行政院環境部,台北。
35. 環境部(2024b),碳費徵收對象溫室氣體減量指定目標總說明,行政院環境部,台北。
36. 環境部(2024c),溫室氣體排放量盤查作業指引,行政院環境部,台北。
37. 環境資訊中心(2023),《氣候變遷因應法》三讀過關 碳費即將開徵 重點整理一次看,https://e-info.org.tw/node/235882,2025年2月11日上網資料。
38. 豐達科技(2024),豐達科技2024年永續報告書,豐達科技股份有限公司,桃園。
39. 證券期貨局(2023),推動我國接軌IFRS永續準則藍圖,金融監督管理委員會證券期貨局,台北。
40. 鐿鈦科技(2024),鐿鈦科技2024年永續報告書,鐿鈦科技股份有限公司,台中。
校內:2026-07-31公開