簡易檢索 / 詳目顯示

研究生: 李祉毅
Li, Chih-Yi
論文名稱: 穿戴式裝置預測兒童立定跳遠之運動學參數研究
The Predictability of Kinematic Parameters of Standing Long Jump in Children with Wearable Inertial Sensors
指導教授: 林麗娟
Lin, Li-Chuan
學位類別: 碩士
Master
系所名稱: 管理學院 - 體育健康與休閒研究所
Institute of Physical Education, Health & Leisure Studies
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 80
中文關鍵詞: 下肢動作分析跳躍動作起跳角速度膝關節角度髖關節角度
外文關鍵詞: Take-off angular velocity, Knee joint angle, Hip joint angle, Jumping motion, Motion analysis of lower extremity
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前言:立定跳遠動是國際上認可且常用於評估兒童及青少年下肢肌力、爆發力的有效檢測方式,也是衝刺及跳躍相關運動表現的重要預測因子,然而學齡前兒童在立定跳遠動作分析之運動學量化研究雖多,卻少有利用新型穿戴式科技客觀剖析學齡前兒童立定跳遠不同分期動作之品質。
    目的:本研究利用內含九軸加速器、陀螺儀、地磁儀之穿戴式裝置(Inertial Measurement Unit, IMU),分析立定跳遠不同分期之運動學特徵參數,探討四至七歲學齡前兒童立定跳遠表現之關鍵運動學參數、動作型態與相關能力發展程度,不僅作為強化學齡前兒童與立定跳遠相關運動能力發展之方向,也建立未來相對複雜運動技巧上之基礎能力。
    方法:研究對象以4歲至7歲(平均60.1 ± 11.86月)之男童88位、女童81位,共計169人次,進行立定跳遠動作測驗,將穿戴式裝置配戴在胸口、右手腕、右大腿、雙腳腳踝,蒐集包含每次跳躍過程之預備期重心高度變化量(°)、預備期手臂後擺角度(°)、起跳瞬間手臂前擺角度(°)、預備期至起跳瞬間擺臂角度變化量(°)、預備期髖關節角度(°)、預備期膝關節角度(°)、起跳瞬間髖關節角度(°)、起跳瞬間膝關節角度(°)、預備期至起跳瞬間之髖關節平均角速度(度數/秒)、預備期至起跳瞬間之膝關節平均角速度(度數/秒)、預備期至起跳瞬間之髖和膝關節整體平均角速度(度數/秒),共十一項運動學參數,尋找各運動學參數對動作表現之相關性與影響力,統計方法首先透過立定跳遠成績分成高、低表現兩組,將成績表現與各運動學參數進行獨立樣本t檢定 (Independent t-test) 與單因子共變數分析 (One-way ANCOVA) ,驗證穿戴式裝置蒐集之各運動學參數對立定跳遠成績表現的效果,以皮爾森積差相關 (Pearson Correlation) 分析萃取影響立定跳遠表現之相關生理因子、運動學參數,透過逐步迴歸分析 (Stepwise Regression Analysis) 建立迴歸公式找出對立定跳遠表現具有預測力之相關運動學參數。
    結果:經結果顯示高表現組較低表現組在生理因子部分:年齡年長 40.54 % 、身高多 9.16 % 、體重多 13.07 % 、BMI低 5 % (p <.05);上肢運動學參數部分:起跳瞬間手臂前擺角度高 49.63 %、預備期至起跳瞬間擺臂角度變化量高 40.73 % (p <.05);下肢運動學參數部分:預備期髖關節角度低 33.35 %、預備期膝關節角度低 21.35 %、預備期至起跳瞬間髖和膝關節整體平均角速度快 34.54 %、預備期至起跳瞬間髖關節平均角速度快 20.03 %、預備期至起跳瞬間膝關節平均角速度快 12.91 % 皆達顯著差異(p <.05),以年齡為共變數分析時,運動學參數部分的結果亦相同。
    皮爾森積差相關性分析顯示年齡 (r = 0.672, p < 0.001 ) 、身高 (r = 0.490, p < 0.001) 、體重 (r = 0.301, p = 0.001) 、BMI (r = -0.176, p = 0.022) 與起跳瞬間手臂前擺角度 (r = 0.279, p < 0.001) 、預備期至起跳瞬間擺臂角度變化量 (r = 0.233, p = 0.002 ) 、預備期髖關節角度 (r = -0.349, p < 0.001) 、預備期膝關節角度 (r = -0.259, p = 0.001 ) 、預備期至起跳瞬間髖關節之平均角速度 (r = 0.220, p = 0.004) 、預備期至起跳瞬間膝關節之平均角速度 (r = 0.183, p = 0.017) 、預備期至起跳瞬間髖和膝關節整體平均角速度 (r = 0.343, p < 0.001) 皆與立定跳遠表現有顯著相關(p <.05)。
    由逐步迴歸分析結果顯示年齡 (t = 11, p < 0.001) 、預備期至起跳瞬間髖和膝關節整體平均角速度 (t = 2.99, p = 0.003) 、預備期膝關節角度 (t = -2.679, p = 0.008) 以及預備期髖關節角度 (t = -2.593, p = 0.01)與立定跳遠動作表現具有顯著相關 (R = 0.74, p = 0.01) 且預測力達53.7% (調整後R² = 0.537)。
    結論:本研究透過穿戴式裝置分析兒童立定跳遠表現,發現年齡、身高、體重、BMI會是影響立定跳遠成績表現之重要生理因子,表示學齡前兒童生長發育歷程與立定跳遠表現高度相關,在運動學參數部分,具有影響力的上肢動作範圍包括起跳瞬間手臂前擺角度、預備期手臂後擺至前擺的角度變化量,下肢動作則為預備期時髖和膝關節角度、從預備期到起跳瞬間髖和膝關節角度整體和分別之平均角速度,而年齡、預備期至起跳瞬間髖和膝關節整體平均角速度、預備期膝關節角度、預備期髖關節角度為影響立定跳遠動作表現之關鍵參數。
    建議:結果證明穿戴式裝置已能有效利用即時數據對照進行動作修正,未來在進行學齡前兒童跳躍相關運動的實際教學或動作分析實驗時,將穿戴式裝置配戴在大腿及腳踝處,偵測學齡前兒童下蹲及起跳時關節變化幅度與角速度即可達到主要分析效果,若還需要其他參數輔助則可配戴手腕以進一步偵測手臂擺幅變化。

    Background: Standing long jump (SLJ) is often used as a test to evaluate the muscular strength and power of the lower extremity in children and adolescents. However, few studies have so far been conducted to analyze the movement patterns of the SLJ performance in preschool children at different stages with advanced wearable technology.
    Purpose: This study aimed to analyze the kinematic parameters of the SLJ performance in children at different stages with wearable nine-axis inertial measurement units.
    Method: A total of 169 children aged 4 to 7 (average 60.1 ± 11.86 months) were chosen as the subjects to perform standing long jumps. According to their performance scores, those ranked among the top 30% were treated as the high-performance group, while those ranked among the bottom 30% were treated as the low-performance group. The data of the SLP performance were captured by five wearable nine-axis inertial measurement units worn by the subject, with a total of 11 kinematic parameters, including variance of arms swing angle in preparation (PRE-TO arms swing)(°), arms swing forward angle in takeoff (TO arms swing)(°), arms swing backward angle in preparation (PRE arms swing)(°), variance of center of gravity change in preparation (PRE CG)(°), hip joint angle in preparation (PRE hip)(°), knee joints angle in preparation (PRE knee)(°), hip joints angle in take-off (TO hip)(°), knee joints angle in take-off (TO knee)(°), hip and knee joint overall average angular velocity from preparation to takeoff (PRE-TO OAAV hip and knee)(deg/sec), hip joint average angular velocity from preparation to takeoff (PRE-TO AAV hip)(deg/sec), knee joint average angular velocity from preparation to takeoff (PRE-TO AAV knee)(deg/sec). Based on the collected data, t-test and One-Way Analysis of Covariance (ANCOVA) were used to analyze the motion quality of the SLJ performance and make comparisons between the high-performance group and the low-performance group in terms of SLJ kinematic parameters. Pearson Correlation analysis was performed to determine the correlation between each parameter and the SLJ performance, and the stepwise regression analysis was conducted to explore the key parameters affecting the SLJ performance in children.
    Results: In terms of anthropometric parameters, the high-performance group was 40.54 % older in age, 9.16 % taller in height, 13.07 % heavier in weight, and 5 % lower in BMI than the low-performance group (p<.05); With regard to the kinematics parameters of the upper extremity, the high-performance group was 49.63 % higher in TO arms swing, and 40.73 % higher in variance of PRE-TO arms swing (p<.05). With regard to the kinematic parameters of the lower extremity, the high-performance group was 33.35 % lower in the PRE hip, 21.35 % lower in the PRE knee, 34.54 % faster in the PRE-TO OAAV hip and knee, 20.03 % faster in the PRE-TO AAV hip, and 12.91 % faster in the PRE-TO AAV knee (p < .05).
    The results of Pearson correlation analysis demonstrated that the variables of age, height, weight, BMI, TO arms swing, variance of PRE-TO arms swing, PRE hip, PRE knee, PRE-TO OAAV hip and knee, PRE-TO AAV hip, PRE-TO AAV knee were significantly correlated with the performance of standing long jump (p < .05).
    As for age, PRE-TO OAAV hip and knee, PRE knee, and PRE hip were the critical kinematic parameters affecting the performance of standing long jump (R² = 0.537, p = 0.01).
    Conclusion: The wearable device is effective as an instrument used to collect data for analysis to improve jump-related motion performance. In addition to the anthropometric factors of age, height, weight, and BMI, the kinematic parameters of the overall average angular velocity and the hip and knee joint angle of the lower extremity in the pre-takeoff moment were decisive factors for the SLJ performance in children.
    Suggestion: With the physical growth of children and the muscular strength and explosive power in the lower extremity as the key factors affecting the SLJ performance, wearable devices can be simply fixed on the thigh and unilateral ankle of the subject during a jump-related teaching activity or experiment to capture the data on change of joint angle and angular velocity from preparation to takeoff for an effective jump-related motion analysis.

    摘要 I Abstract IV 誌謝 XIV 目錄 XVI 圖目錄 XVIII 表目錄 XIX 第壹章 緒論1 第一節、研究背景與動機1 第二節、研究目的3 第三節、操作性定義3 第四節、研究重要性6 第五節、研究範圍與限制6 第貳章 文獻探討8 第一節、兒童動作發展的特質8 第二節、兒童跳躍動作與相關能力之發展10 第三節、影響兒童立定跳遠表現之生理因子11 第四節、上肢動作型態之於立定跳遠表現的影響12 第五節、下肢動作型態在立定跳遠不同分期之影響13 第六節、新型動作分析工具之發展19 第七節、文獻探討結語27 第參章 研究方法29 第一節、研究對象29 第二節、研究設計與流程29 第三節、研究工具32 第四節、實驗流程35 第五節、資料處理與分析37 第肆章 結果39 第一節、受試者基本資料39 第二節、立定跳遠之差異性分析39 第三節、控制年齡之立定跳遠表現差異41 第四節、立定跳遠表現與運動學參數之相關性分析44 第五節、影響立定跳遠表現之迴歸分析46 第伍章 討論49 第一節、生長因素對立定跳遠表現的影響49 第二節、影響立定跳遠表現之相關生理因子與運動學參數50 第三節、運動學參數於立定跳遠高低表現組之差異與驗證53 第四節、預測立定跳遠表現之關鍵參數54 第陸章 結論與建議56 第一節、結論56 第二節、建議56 參考文獻58 附錄一66 附錄二72

    王珮玲 (2011)。兒童發展評量與輔導 (第四版)。遠流。
    王靖泠 (2012)。典型發展學齡前兒童跳躍活動之質化與量化分析〔未出版碩士論文〕。中國醫藥大學物理治療學系復健科學研究所。
    王俊杰 (2003)。男性晚期兒童立定跳遠動作表現的相關因素〔未出版碩士論文〕。臺灣師範大學體育學系。
    王俊杰 (2003)。男性晚期兒童立定跳遠動作表現的相關因素〔未出版碩士論文〕。臺灣師範大學體育學系。
    呂宏進、林政東 (2000)。肌力與爆發力的週期。大專體育學刊,2(1),165-173。
    林惠美、曾國維、陳永盛 (2015)。運動員成長追蹤在訓練科學之運用,大專體育,(132),35-43。
    林泊宇 (2015)。結合兩種不同之分析方式探討肢段內關節間協調在移動任務的年齡發展〔碩士論文,成功大學物理治療學系學位論文〕。https://hdl.handle.net/11296/37yn22
    前橋明 (2017)。兒童體育理論與實踐:初級 (黃愫芬譯;5版)。光佑文化事業股份有限公司。(原著出版於2017)。
    Gallahue, D. L. (1996)。兒童發展與身體教育 (許義雄譯)。台北希爾國際。(原著出版於1997)
    游添燈 (1992)。柔軟度與關節活動範圍。大專體育,3,56-65。
    廖雅彬 (2003)。國小一至三年級學童立定跳遠動作表現相關影響因素研究〔未出版碩士論文〕。國立體育大學運動科學研究所。
    劉行哲 (1989)。醫用生理學。台北南山堂出版社。
    劉純忠 (2004)。四至六歲男童立定跳遠動作與成績表現之研究〔未出版碩士論文〕。國立體育大學運動科學研究所。
    劉純忠、鍾祥賜 (2005)。四至六歲男童立定跳遠成績表現與下肢動作型式之研究。國立體育學院論叢,16(1),341-354。
    蔡佩芝 (2018)。幼兒健康體適能之調查研究-以新竹縣市大中班幼兒為例 〔碩士論文,南華大學幼兒教育學系碩士論文〕。https://hdl.handle.net/11296/f93a5k
    蘇建文等人 (1998)。發展心理學。台北心理出版社。
    學術堂 (2014年5月16日)。分析立定跳遠起跳、腾空與落地等環節中的生物力學。http://www.lunwenstudy.com/ydshengwuli/22771.html
    張武進 (2009)。國小男童立定跳遠之生物力學分析〔未出版碩士論文〕。臺灣師範大學體育學系在職進修碩士班。
    鍾寶弘、相子元 (2000)。垂直跳表現好壞之力學因素分析。國立體育學院論叢,11,163-181。
    Ashby, B. M., & Heegaard, J. H. (2002). Role of arm motion in the standing long jump. Journal of Biomechanics, 35(12), 1631-1637.
    Barnett, L. M., Morgan, P. J., van Beurden, E., & Beard, J. R. (2008). Perceived sports competence mediates the relationship between childhood motor skill proficiency and adolescent physical activity and fitness: a longitudinal assessment. International journal of behavioral nutrition and physical activity, 5(1), 1-12.
    Benson, L. C., Räisänen, A. M., Clermont, C. A., & Ferber, R. (2022). Is This the Real Life, or Is This Just Laboratory? A Scoping Review of IMU-Based Running Gait Analysis. Sensors, 22(5), 1722.
    Bulten, R., King-Dowling, S., & Cairney, J. (2019). Assessing the validity of standing long jump to predict muscle power in children with and without motor delays. Pediatric Exercise Science, 31(4), 432-437.
    Clark, J. E., Phillips, S. J., & Petersen, R. (1989). Developmental stability in jumping. Developmental Psychology, 25(6), 929.
    Cech, D. J. (2011). Functional movement development across the life span. Elsevier Health Sciences.
    Cohen, D. D., Gomez-Arbelaez, D., Camacho, P. A., Pinzon,S., Hormiga, C., Trejos-Suarez, J., . . . Lopez-Jaramillo, P.(2014). Low muscle strength is associated with metabolic risk factors in Colombian children: The ACFIES study. PLoS One, 9(4). doi:10.1371/journal.pone.0093150
    Clark, C. C. T., Bisi, M. C., Duncan, M. J., & Stagni, R. (2021). Technology-based methods for the assessment of fine and gross motor skill in children: A systematic overview of available solutions and future steps for effective in-field use. Journal of Sports Sciences, 39(11), 1236-1276.
    Dare, M. T., & Gordon, N. (1970). Clumsy children: a disorder of perception and motor organisation. Developmental Medicine & Child Neurology, 12(2), 178-185.
    David L. Gallahue, John C. Ozmun, & Jackie Goodway (2012). Understanding motor development : infants, children, adolescents, adults. New York : McGraw-Hill.
    Espinosa Sánchez, M. (2017). A STANDING LONG JUMP STUDY IN PRE ADOLESCENTS AGED 9-13. Journal of Sport & Health Research, 9(2). 233-246.
    Feltner, M.E., Fraschetti, D.J., & Crisp, R.J. (1999). Upper extremity augmentation of lower extremity kinetics during countermovement vertical jumps. Journal of Sports Sciences, 17, 449–466.
    Fernandez-Santos, J. R., Ruiz, J. R., Cohen, D. D., Gonzalez-Montesinos, J. L., & Castro-Piñero, J. (2015). Reliability and validity of tests to assess lower-body muscular power in children. The Journal of Strength & Conditioning Research, 29(8), 2277-2285.
    Fernandez-Santos, J. R., Gonzalez-Montesinos, J. L., Ruiz, J. R., Jiménez-Pavón, D., & Castro-Piñero, J. (2018). Kinematic analysis of the standing long jump in children 6-to 12-years-old. Measurement in Physical Education and Exercise Science, 22(1), 70-78.
    Garai, J. E., & Scheinfeld, A. (1968). Sex differences in mental and behavioral traits. Genetic Psychology Monographs, 77(2), 169–299.
    Gontarev, S., Zivkovic, V., Velickovska, L. A., & Naumovski, M. (2014). First normative reference of standing long jump indicates gender difference in lower muscular strength of Macedonian school children. Health, 06(1), 99-106. DOI:10.4236/health.2014.61016
    Gómez-Bruton, A., Matute-Llorente, Á., González-Agüero, A., Casajús, J. A., & Vicente-Rodríguez, G. (2017). Plyometric exercise and bone health in children and adolescents: a systematic review. World Journal of Pediatrics, 13(2), 112-121.
    Gallahue, D. L. (1996). Developmental physical education for today's children (3rd ed.). New York: McGraw-Hill.
    Gallahue, D. L., & Ozmun, J. C. (1998). Understanding motor development: Infants, children, adolescents, adults (4th ed.). New York: McGraw-Hill.
    Gallahue, D. L., & Ozmun, J. C. (2002). Understanding motor development: Infants, children, adolescents, adults (5th ed.). New York: McGraw-Hill.
    García-Hermoso, A., Ramírez-Campillo, R., & Izquierdo, M. (2019). Is muscular fitness associated with future health benefits in children and adolescents? A systematic review and meta-analysis of longitudinal studies. Sports Medicine, 49(7), 1079-1094.
    Hou, Y., Wang, S., Li, J., Komal, S., & Li, K. (2021, October 23-25). Reliability and Validity of a Wearable Inertial Sensor System for Gait Assessment in Healthy Young Adults [Oral Presentation]. 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China. https://doi.org/10.1109/CISP-BMEI53629.2021.9624463
    Hosseinizarch, S. H., & Bagherpoor, M. (2014). Can standing long jump predict sprint among children. International Journal of Basic Sciences & Applied Research, 3(2), 130-134.
    Haywood, H. C., Brooks, P., & Burns, S. (1985). Stimulating cognitive development at developmental level: A tested, non-remedial preschool curriculum for preschoolers and older retarded children. Special Services in the Schools, 3(1-2), 127-147.
    Haywood, K. M. (1993). Laboratory activities for life span motor development (2nd ed.). Human Kinetics Publishers.
    Haywood, K.M., & Getchell, N. (2001). Life span motor development (3rd ed.). Champaign, IL:Human Kinetics.
    Hraski, M., Hraski, Ž., & Prskalo, I. (2015). Comparison of standing long jump technique performed by subjects from different age groups. Baltic Journal of Sport and Health Sciences, 3(98). 2-12
    Jensen, J. L., Phillips, S. J., & Clark, J. E. (1994). For young jumpers, differences are in the movement's control, not its coordination. Research Quarterly for Exercise and Sport, 65(3), 258-268.
    Wiklander, J., & Lysholm, J. (1987). Simple tests for surveying muscle strength and muscle stiffness in sportsmen. International Journal of Sports Medicine, 8(1), 50-54.
    Latorre-Román, P. Á., García-Pinillos, F., & Mora-López, D. (2017). Reference values of standing long jump in preschool children: a population-based study. Pediatric Exercise Science, 29(1), 116-120.
    Lv, R. (2012). Kinematic Analysis of Standing Long Jump for 3 to 6 Years Old Children. In Zeng, D. (Eds.), Advances in Information Technology and Industry Applications. Lecture Notes in Electrical Engineering (vol 136). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-26001-8_47
    Masci, I., Vannozzi, G., Getchell, N., & Cappozzo, A. (2012). Assessing hopping developmental level in childhood using wearable inertial sensor devices. Motor control, 16(3), 317-328.
    Mahmoud, I., Othman, A. A. A., Abdelrasoul, E., Stergiou, P., & Katz, L. (2015). The reliability of a real time wearable sensing device to measure vertical jump. Procedia Engineering, 112, 467-472.
    Ortega, F. B., Cadenas-Sánchez, C., Sánchez-Delgado, G., Mora-González, J., Martínez-Téllez, B., Artero, E. G., ... & Ruiz, J. R. (2015). Systematic review and proposal of a field-based physical fitness-test battery in preschool children: the PREFIT battery. Sports medicine, 45(4), 533-555.
    Payne, V. G., & Isaacs, L. D. (2017). Human motor development: A lifespan approach(10th ed.). Routledge.
    Pate, R., Oria, M., Pillsbury, L., Committee on Fitness Measures and Health Outcomes in Youth, Food and Nutrition Board, & Institute of Medicine (Eds.). (2012). Fitness Measures and Health Outcomes in Youth. National Academies Press.
    Pennell, A., Yee, N., Conforti, C., Yau, K., & Brian, A. (2021). Standing Long Jump Performance in Youth with Visual Impairments: A Multidimensional Examination. International Journal of Environmental Research and Public Health, 18(18), 9742.
    Ruiz, J. R., Castro-Piñero, J., España-Romero, V., Artero, E. G., Ortega, F. B., Cuenca, M. M., ... & Castillo, M. J. (2011). Field-based fitness assessment in young people: the ALPHA health-related fitness test battery for children and adolescents. British journal of sports medicine, 45(6), 518-524.
    Shetty, A.B., Etnyre, B.R.,(1989). Contribution of arm movement to the force components of a maximum vertical jump. Journal of Orthopaedic and Sports Physical Therapy, 11, 198-201.
    Steene-Johannessen, J., Kolle, E., Andersen, L. B., &Anderssen, S. A. (2013). Adiposity, aerobic fitness, muscle fitness, and markers of inflammation in children. Medicine & Science in Sports & Exercise, 45(4), 714–721.
    Sgrò, F., Mango, P., Pignato, S., Schembri, R., Licari, D., & Lipoma, M. (2017). Assessing standing long jump developmental levels using an inertial measurement unit. Perceptual and motor skills, 124(1), 21-38.
    Wickstrom, R. L. (1977). Fundamental motor patterns(2nd ed.). Philadelphia: Lea & Febiger.
    Winter, D. A. (1995). Human balance and posture control during standing and walking. Gait & Posture, 3(4), 193-214.
    Wang, C.C., Jwo, H., & Chen, S. H. (2003). Standing long jump pattern of early childhood: Effects of task constraints. In S. Tangsujjapoj. (Ed.), Program and proceedings: Towards the development of sport industry in Asia (365-369). The 4th ICHPER. SD Asia Congress, Bangkok, Tailand.
    Wu, W. L., Wu, J. H., Lin, H. T., & Wang, G. J. (2003). Biomechanical analysis of the standing long jump. Biomedical Engineering: Applications, Basis and Communications, 15(5), 186-192.
    Wakai, M., & Linthorne, N. P. (2005). Optimum take-off angle in the standing long jump. Human Movement Science, 24(1), 81-96.
    Zhou, H., Yu, P., Thirupathi, A., & Liang, M. (2020). How to Improve the Standing Long Jump Performance? A Mininarrative Review. Applied bionics and biomechanics https://doi.org/10.1155/2020/8829036

    無法下載圖示 校內:2027-09-27公開
    校外:2027-09-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE