簡易檢索 / 詳目顯示

研究生: 陳耀乾
Chen, Yao-Chien
論文名稱: 以可視錐分析工件夾持方位及 多軸工具機構型之研究
Study on Workpiece Orientation and the Configuration of Multi-Axis Machine Tool Using the Analysis of Visibility Cone
指導教授: 李榮顯
Lee, Rong-Shean
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 113
中文關鍵詞: 可視錐工具機
外文關鍵詞: visibility cone, machine tool
相關次數: 點閱:119下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多軸工具機對於複雜曲面加工,不僅能達到快速、精密切削方式,且可降低工件定位之誤差,進而提高製造效率。然而,工程師往往憑經驗判斷工件夾持方位,因此常無法順利加工完外型複雜的曲面。若刀具路徑未規劃前,能有個客觀評估工件夾持方位及適合工具機構型,則可達到產品快速開發之成效。
    本論文利用可視錐理論並配合工具機工作空間分析,建構出可判斷最佳工件夾持方位及適合之工具機之模組。首先,針對三軸、四軸及五軸工具機合成出其構造構型,利用形狀創成函數分析其工作空間。接著,沿著u、v方向擷取欲加工曲面之點位置及法向量,並計算出曲面上每個點在u、v方向之可視範圍,即為此點之可視錐。於三軸加工中,將曲面法向量投影至單位球上,利用工件夾持方位之改變,使法向量能在球銑刀之可視範圍內。在四軸加工中,將曲面各點之可視錐與刀軸可行方位交集,由工件夾持方位之改變,找出最多交集時的最佳夾持方位。於五軸加工中,依據不同構型工具機之工作空間,判斷欲加工曲面的可視範圍,使工具機工作空間能由工件夾持方位之改變,與曲面上每點之可視錐有最多交集。
    本論文提出可製造性評估方法可避免傳統經驗上誤判工件夾持方位及工具機構型,並避免刀具與曲面發生干涉,以利後來之刀具路徑規劃。且對於產品加工,經由工件夾持方位改變,可節省時間及成本浪費;於選擇工具機方面,亦可避免使用不適之之工具機構型。

    The multi-axis machining of complex surface is not only a fast and accurate method but also reduces errors of workpiece set-up. However, engineers usually determine set-up orientation by experiences and often they cannot finish complex surfaces at one set-up. If there is a rational evaluation for the workpiece orientation and the configuration of machine tool before planning of toolpath, it would increase the efficiency of process development.
    Adapting the visibility cone together with workspace analysis, the selection module for the optimum workpiece orientation and the suitable configuration of machine tool was constructed in the thesis. First, the configurations of 3,4 and 5-axis machine tools were synthesized and then, the workspace was analyzed using form-shaping function. The position and normal vector of each point along u, v directions in the machining surface were got to calculate the visibility range as the point of the visibility cone. In 3-axis machining, all normal vectors of surface were projected on a unit sphere. All normal vectors had to be in the visibility range of the ball mill cutter as the workpiece set-up orientation changed. In 4-axis machining, the most intersection between the visibility cone of each point and the workspace was found by changing the set-up orientation. In 5-axis machining, according to different workspaces of 5-axis machine tools, the visibility range of machining surface was determined to find the most intersection between the visibility cone and the workspace by changing the workpiece orientation.
    This thesis proposed a method of manufacturability evaluation to obtain the optimum workpiece set-up orientation and the suitable configuration of machine tools. The tool interference with surface can be avoided to improve the planning of toolpath. For manufacturing, it can reduce cost by changing to optimum set-up orientation. For selection machine tool, it can also avoid the use of unsuitable configuration of machine tool.

    中文摘要 I 英文摘要 II 總 目 錄 III 圖 目 錄 V 表 目 錄 VII 符號說明 XIII 第一章 前言 1 1-1概述 1 1-2 文獻回顧 2 1-3 研究目的與範疇 5 第二章 座標系統與座標轉換矩陣 7 2-1 基本座標轉換之轉換矩陣 7 2-2 繞任意軸旋轉之轉換矩陣 13 2-3 尤拉角轉換(EULER ANGLE REPRESENTATIONS) 14 第三章 工具機構型與工作空間 15 3-1工具機構型碼 15 3-1.1工具機之特性碼與座標碼 15 3-1.2 工具機構型碼 17 3-2多軸工具機之構型合成 18 3-2.1 形狀創成函數 18 3-2.2 工具機之合成 20 3-3工作空間之定義 27 3-4 各構型多軸工具機之工作空間 32 第四章 自由曲面之特性與可視錐分析 46 4-1 自由曲面之特性 46 4-1.1 BÉZIER曲面 46 4-1.2 B-SPLINE曲面: 47 4-1.3 NURBS曲面模式 48 4-2 曲面之可視錐分析 49 4-2.1 可視性定義與分析 49 4-2.2 可視錐之定義 54 4-2.3 曲面可視錐之演算法 56 第五章 工件最佳夾持方位及適合工具機構型 60 5-1三軸工具機之最佳夾持方位 61 5-2 四軸工具機之最佳夾持方位 65 5-3 五軸工具機之最佳夾持方位 70 5-3.1 刀軸傾斜型 70 5-3.2 工作台傾斜型 75 5-3.3 工作台/刀軸傾斜型 80 5-4 最佳工具機構型之判別 85 第六章 結果與討論 86 6-1 分析軟體之架構與介紹 86 6-2 自由曲面分析與討論 89 6-2.1曲面之可視錐分析與討論 89 6-2.2三軸最佳夾方位 90 6-2.3四軸最佳夾持方位 90 6-2.4五軸最佳夾持方位 91 6-3 曲面切削模擬與驗證 94 第七章 結論與建議 98 7-1結論 98 7-2 建議 99 參考文獻 100 附錄一 IDEF之簡介 103 附錄二 曲面控制點 109

    1. Balasubramanian, M., P. Laxmiprasad, S. Sarma, and Z. Shaikh, “Generation 5-Axis NC Roughing Paths Directly from A Tessellated Pepresentation”, Computer-Aided Design, Vol. 32, pp. 261-277(2000).
    2. Chen, L.L. and T. C. Woo, “Computational Geometry on the Sphere with Application to Automated Machining”, ASME Trans. Journal of Mechanical Design, Vol. 114, pp. 305-326 (1992).
    3. Chen, L.L., and S. H. Suh and T.C. Woo, “Parting Directions for Mould and Die Design”, Computer-Aided Design, Vol. 25,No. 12,pp. 762-768(1993).
    4. Choi, B. K., D. H. Kim and R. B. Jerard, “C-Space Approach to Tool-Path Generation for Die and Mould Machining”, Computer-Aided Design, Vol. 29, No. 9,pp. 657-669(1997).
    5. Gupta, P., R. Janardan, J. Majhi, and T. Woo, “Efficient Geometric Algorithms for Workpiece Orientation in 4- and 5-Axis NC Machining”, Computer-Aided Design, Vol. 28, No. 8, pp. 577-587 (1996).
    6. Gupta, K. C., B. Roth, “Design Considerations for Manipulators Workspace”, ASME Journal of Mechanical Design, Vol. 104, pp. 704-771(1982).
    7. Gershon, E. and E. Zussman, “Cone Visibility Decomposition of Freeform Surfaces”, Computer-Aided Design, Vol.30, No.4, pp. 315-320(1998).
    8. Idemura, T. and Y. Takeuchi, “Machining and Grinding by 5-Axis Control Machining Center –For the Workpiece with Convex Sculptured Surface” Journal of the Japan Society for Precision Engineering(in Japanese), Vol. 57,No. 11, pp. 1989-1994(1991).
    9. Ishizawa, H., Yamada, M., Tanaka, D., and Kishinami, T., “Form Shaping Function Model of 5-Axis Machine Tools-Classification of 5-Axis Machine Tools Based on Form Shaping Function” 5th Sapporo International Computer Graphics Symposium(in Japanese), No. 26-27, pp. 1-6(1991).
    10. Kim, D. S., P. Y. Papalambros, and T. C. Woo, “Tangent, Normal, and Visibility Cones on Bezier Surfaces”, Computer Aided Geometric Design, Vol. 12, pp. 305-320 (1995).
    11. Kumar, A. and M. S. Patel, “Mapping the Manipulator Workspace Using Interactive Computer Graphic”, The International Journal of Robotics Research, Vol. 5, No. 2, pp. 122-130(1986).
    12. Kumar, A. and K. J. Waldron, “The Workspaces of a Mechanical Manipulator ”, ASME Journal of Mechanical Design, Vol.103, pp. 665-672(1981).
    13. Kang, J. K. and S. H. Suh, “Machinability and Set-Up Orientation for Five-Axis Numerically Controlled Machining of Free Surfaces”, International Journal of Advanced Manufacturing Technology, Vol. 13,pp. 311-325(1997).
    14. Kweoon, S. and D. J. Medeiros, “Part Orientation for CMM Inspection Using Dimensioned Visibility Map”, Computer-Aided Design, Vol.30, No. 9, pp.741-749(1998).
    15. Kumar, A. and M. S. Patel, “Mapping the Manipulator Workspace Using Interactive Computer Graphic”, The International Journal of Robotics Research, Vol. 5, No. 2, pp. 122-130(1986).
    16. Lin, L. L. and T. C. Woo, “Computational Geometry on the Sphere With Application to Automated Machining”, ASME Trans. Journal of Mechanical Design, Vol. 114, pp. 228-295 (1992).
    17. Litvin, F. L., “Gear Geometry and Applied Theory” , PTR Prentice Hall, Englewood Cliffs, New Jersy (1994).
    18. Lee, Y. S. and T. C. Chang, “Automatic Cutter Selection for 5-axis Sculptured Surface Machining”, The International Journal of Production Research, Vol. 34, No. 4, pp.977-998 (1996).
    19. Morishige, K., K. Kase and Y. Takeuchi, “Collision-Free Tool Path Generation Using 2-Dimensional C-Space for 5-Axis Control Machining”, International Journal of Advanced Manufacturing Technology, Vol. 13, pp. 393-400(1997).
    20. Paul, R. P., “Robot Manipulators: Mathematics”, Programming and Control, MIT Press, Cambridge, Mass (1981).
    21. Reshetov, D. N. and V. T. Portman, “Accuracy of Machine Tool”, ASME Press, pp.25-60(1988).
    22. Rogers, D. F. and J. A. Adams, “Mathematical Elements for Computer Graphics”, 2nd, McGraw-Hill Publishing Co. (1990).
    23. Sakamoto, S. and I. Inasaki, “Analysis of Generating Motion for Five Axis Machining Centers ”, Japanese Society of Mechanical Engineers. Vol. 59, No. 561, pp. 1553-1559(1993).
    24. Tang, K., T. Woo and J. Gan, “Maximum Intersection of Spherical Polygons and Workpiece Orientation for 4- and 5-axis NC Machining”, ASME Trans. Journal of Mechanical Design, Vol. 114, pp. 477-485 (1992).
    25. Takeuchi, Y., H. Shi Izu, T. Idemura, T. Watanabe, and T. Ito, , “5-Axis Control Machining Based on Dolid Model” Journal of the Japan Society for Precision Engineering(in Japanese), Vol. 56, No. 11, pp.2063-2068(1990).
    26. Takeuchi, Y., K. Wada, T., Hisaki, and M. Yokoyama, “Computer-Controlled 5-Axis Machine Tool Based on Trochoidal Interpolation”, Journal of Japan Society for Precision Engineering(in Japanese), Vol. 60, No. 1, pp.75-79(1994).
    27. Vafaeesefat, A. and H. A. Elemaraghy, “Automated Accessibility Analysis and Measurement Clustering for CMMs”, International Journal of Production Research, Vol. 38, No. 10, pp. 2215-2231(2000).
    28. Woo, T. C. and B. F. von Turkovich, “Visibility Map and Its Application to Numerical Control”, Annals of the CIRP, Vol.39, pp. 451-454 (1990).
    29. Woo, T. C., ”Visibility Maps and Spherical Algorithms”, Computer-Aided Design, Vol.26, No.1, pp. 6-16 (1994).
    30. Yin, Z. P., H. Ding and Y. L. Xiong, “Visibility Theory and Algorithms with Application to Manufacturing Processes”, International Journal of Production Research, Vol. 38,No. 13,pp. 2891-2909(2000).
    31. 位元文化研究室 著, “精通視窗程式設計-適用Visual C++6.0”, 文魁資訊股份有限公司, 2000年3月 ,Section1-15。
    32. 佘振華, “空間凸輪五軸加工數值控制程式設計系統之研究”, 博士論文, 國立成功大學機械工程研究所, 86年6月。
    33. 李政男, “應用包絡元件於多軸加工數值控制程式設計系統之研究”, 博士論文, 國立成功大學機械工程研究所, 90年1月。
    34. 陳福成,”綜合加工機機構之構形合成”,博士論文,國立成功大學機械工程研究所,民國86年1月。
    35. 陳嘉仁, “多軸曲面加工利用可視性映射做工具機構型選擇之研究”, 碩士論文, 國立成功大學機械工程研究所, 90年7月。
    36. 黃世光, “多軸工具機之合成與分析”, 碩士論文, 國立成功大學機械工程研究所, 81年6月。
    37. 葉煌成, “以具分度盤之三軸工具機對自由曲面加工之可製造性評估系統發展”, 碩士論文, 國立成功大學機械工程研究所, 89年6月。

    下載圖示 校內:2003-07-12公開
    校外:2004-07-12公開
    QR CODE