簡易檢索 / 詳目顯示

研究生: 簡滄銘
Chien, Tsang-Ming
論文名稱: 以結合流體力學在連續式微流體反應器內操控金奈米線合成的實驗探討
Hydrodynamics-Assisted Synthesis of Gold Nanowires Using Continuous Microfluidic Reactors
指導教授: 魏憲鴻
Wei, Hsien-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 135
中文關鍵詞: 微流體微流體反應器界面活性劑金奈米線四氯金酸
外文關鍵詞: microreactor, CTAB, microfluidics, HAuCl4, gold nanowires
相關次數: 點閱:103下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究目的是發展一種可用來合成金奈米材料的新方法。藉由結合反應動力學與流體力學的操控,我們可在微流體系統中獲得定義明確的金奈米線與金奈米結晶物質。這個合成反應是在一個連續式的微流體反應器中進行,藉由控制流量及化學反應條件並配合反應器設計,我們可以得到一些不尋常的金奈米結構,而這些結構是無法利用一般傳統的批式反應器來獲得。

    實驗結果顯示在低流量下,會有金奈米線的生成,若流量增加,佔生成物大多數的則是具有不同形狀的金奈米結構。我們也發現反應器的設計在金奈米線的生成中扮演關鍵性的角色。我們所使用的連續式微流體反應器是由兩種不同的幾何構造所組成,一個是Tesla曲流道,另一個則是單純的直線結構,把這兩種微流體幾何結構作一適當的安排,可設計出一個最佳的微流體反應器來合成一維的金奈米線狀結構。此外,我們也提出一個合理的機制來解釋為何可利用連續式微流體反應器可合成金奈米線狀結構。此機制的特點在於流體力學之效應可提供另一新的途徑來操控過程中之時間尺度及反應動力學。這個研究不僅能為合成奈米材料提供一個新的對策,而且還具有可與其他的微流體元件進行整合的優勢,在微晶片 (lab on a chip)之應用具開發潛力。

    A novel method to synthesize gold nanomaterials is reported in this thesis. A combination of reaction kinetics and hydrodynamic manipulation gives a birth of well-defined gold nanowires and nanocrystals. By controlling the flow rate in concert with proper reaction conditions and channel designs, we can obtain some unusual gold nanostructures that cannot be achieved by conventional batch methods.

    The results show that well-defined one-dimensional nanowires can form at low flow rates, and a variety of nanocrystals at high flow rates. We also find that the design of a microreactor is critical to the formation of nanowires. An optimized microreactor design comprises a number of non-straight structures and straight channels. We also propose a plausible mechanism to explain the formation of gold nanowires using continuous microreactor. The novelty here is that hydrodynamic effects provide alternative routes to manipulating various time scales and hence the kinetics of the process. These effects can be only realized in continuous microreactor, but not in convectional batch reactors.

    This work not only provides a new paradigm for synthesis of nanomaterials, but also could be advantageous to integrating other microfluidic devices for subsequent analyses.

    目錄 摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 目錄 Ⅵ 表目錄 Ⅶ 圖目錄 Ⅷ 符號說明 ⅩⅣ 第一章 前言 1 1.1研究背景 1 1.2文獻回顧 2 1.2.1利用微流體反應器合成奈米材料 3 1.2.2以傳統批式實驗方式合成金奈米粒子與金奈米桿 5 1.2.3利用傳統批式實驗方式合成金奈米線狀結構 8 1.3研究動機 10 第二章 實驗部分 24 2.1光罩設計 24 2.2光微影(Photolithography)製程 25 2.2.1晶片清洗 25 2.2.2塗佈光阻(Spin Coat) 25 2.2.3軟烤(Soft Bake) 26 2.2.4曝光(Exposure) 27 2.2.5曝後烤(Post Expose Bake) 28 2.2.6顯影(Development) 29 2.2.7硬烤(Hard Bake) 29 2.2.8 測量厚度 30 2.3微流體反應器製作 30 2.3.1材料 30 2.3.2微流體反應器模型製作 30 2.4微流體反應器組裝 32 2.4.1接合(Bonding) 32 2.4.2管件組裝 33 2.4.3 PDMS表面改質 33 2.5實驗設備與實驗步驟 34 2.5.1實驗設備 34 2.5.2實驗藥品 36 2.5.3實驗步驟 36 第三章 結果與討論 49 3.1微流體反應器與批式反應器之比較 51 3.1.1 Type H2反應器與批式反應器於不同反應時間之比較 51 3.1.2 Type H2反應器與Type H1反應器之比較 56 3.2微流體反應器設計及流量對所合成之金奈米材料的影響 57 3.2.1 反應器設計之影響 57 3.2.2流量對金奈米材料生成之影響 63 3.3反應物濃度對所合成之金奈米材料的影響 65 3.3.1保護劑 (CTAB)濃度之影響 66 3.3.2還原劑 (AA)濃度之影響 69 3.4歸納 72 3.4.1微流體反應器與一般批式反應器之比較 72 3.4.2微流體反應器設計對所合成之金奈米材料的影響 73 3.4.3反應物濃度對所合成之金奈米材料的影響 74 第四章 金奈米線狀結構於微流體反應器之形成機制的推測與驗證 106 4.1利用微流體反應器合成金奈米材料之基本構想 106 4.2金奈米線狀結構形成機制之推測 107 4.2.1相關之時間尺度及其物理機制 107 4.2.2金奈米線之形成機制 109 4.2.3結合反應動力與流體力學操控金奈米線之合成 110 4.3利用微流體反應器合成金奈米線狀結構之最佳策略及金奈米線狀結構之特性分析 112 第五章 結論與建議 124 5.1結論 124 5.2建議 125 5.3未來工作 127 參考文獻 128 附錄A 132 附錄B 133 附錄C 134 自述 135

    Adachi, M., Mori, K., Sato, Y., Pei, L. H., Gold Nanowire Formation of 2-dimensional Network Structure with Electric Conductivity, J. of Chemical Engineering of Japan, 37(5), 604-608, 2004.

    Asefa, T., Lennox, R. B., Synthesis of Gold Nanoparticles via Electroless Deposition in SBA-15, Chem. Mater., 17(10), 2481-2483, 2005.

    Bhushan Bharat, Springer Handbook of Nanotechnology, Germany, Springer, 2004.
    Cao Guozhong, Nanostructures and Nanomaterials: Synthesis, Properties & Applications, Imperial College Press, UK, 2004.

    Chan, E. M., Alivisatos, A. P., Mathies, R. A., High-Temperature Microfluidic Synthesis of CdSe Nanocrystals in Nanoliter Droplets, J. Am. Chem. Soc., 127(40), 13854-13861, 2005.

    Chan, E. M., Mathies, R. A., Alivisatos, A. P., Size-Controlled Growth of CdSe Nanocrystals in Microfluidic Reactors, Nano Lett., 3(2), 199-201, 2003.

    DeMello, J., DeMello, A., Microscale Reactors: Nanoscale Products, Lab on a Chip, 4(2), 11N-15N, 2004.

    Deng, J. P., Wu, C., Yang, C. H., Mou, C. Y., Pyrene-Assisted Synthesis of Size-Controlled Gold Nanoparticles in Sodium Dodecyl Sulfate Micelles, Langmuir, 21(19), 8947-8951, 2005.

    Ding, Y., Wang, Z. L., Structure Analysis of Nanowires and Nanobelts by Transmission Electron Microscopy, J. Phys. Chem. B., 108(33), 12280-12291, 2004.

    Edel, J. B., Fortt, R., deMello, J. C., deMello, A. J., Microfluidic Routes to The Controlled Production of Nanoparticles, Chem. Commun., (10), 1136-1137, 2002.

    Evans D. Fennell, Wennerström Håkan, The Colloidal Domain, Wiley-VCH, USA, 1999.

    Gall, K., Diao, J., Dunn, M. L., The Strength of Gold Nanowires, Nano Lett., 4(12), 2431-2436, 2004.

    Gole, A., Murphy, C. J., Seed-Mediated Synthesis of Gold Nanorods: Role of the Size and Nature of the Seed, Chem. Mater., 16(19), 3633-3640, 2004.

    Han, M. Y., Quek, C. H., Huang, W., Chew, C. H., Gan, L. M., A Simple and Effective Chemical Route for the Preparation of Uniform Nonaqueous Gold Colloids, Chem. Mater., 11(4), 1144-1147, 1999.

    Hong, C. C., Choi, J. W., Ahn, C. H., A Novel in-plane Passive Microfluidic Mixer with Modified Tesla Structures, Lab on a Chip, 4(2), 109-113, 2004.

    Huang Y. J., Di L., Li J. H., Beta-cyclodextrin Controlled Assembling Nanostructures from Gold Nanoparticles to Gold Nanowires, Chemical Physics Letters, 389 (1-3), 14-18, 2004.

    Jana, N. R., Gram-scale Synthesis of Soluble, Near-Monodisperse Gold Nanorods and Other Anisotropic Nanoparticles, Small, 1(8-9), 875-882, 2005.

    Jana, N. R., Gearheart, L., Murphy, C. J., Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles, Langmuir, 17(22), 6782-6786, 2001.

    Khan, S. A., Gunther, A., Schmidt, M. A., Jensen, K. F., Microfluidic Synthesis of Colloidal Silica, Langmuir, 20(20), 8604-8611, 2004.

    Maddanimath, T., Kumar, A., D'Arcy-Gall, J., Ganesan, P. G., Vijayamohanan, K., Ramanath, G., Wet-Chemical Templateless Assembly of Metal Nanowires from Nanoparticles, Chem. Commun., (11), 1435-1437, 2005.

    McDonald, J. C., Whitesides, G. M., Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices, Acc. Chem. Res., 35(7), 491-499, 2002.

    Murphy, C. J., Sau, T. K., Gole, A. M., Orendorff, C. J., Gao, J., Gou, L., Hunyadi, S. E., Li, T., Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications, J. Phys. Chem. B., 109(29), 13857-13870, 2005.

    Ongaro, A., Griffin, F., Beecher, P., Nagle, L., Iacopino, D., Quinn, A., Redmond, G., Fitzmaurice, D., DNA-Templated Assembly of Conducting Gold Nanowires between Gold Electrodes on a Silicon Oxide Substrate, Chem. Mater., 17(8), 1959-1964, 2005.

    Ottino, J. M., Wiggins, S., Introduction: Mixing in Microfluidics, Phil. Trans. R. Soc. Lond. A, 362(1818), 923-935, 2004.

    Pei, L., Mori, K., Adachi, M., Formation Process of Two-Dimensional Networked Gold Nanowires by Citrate Reduction of AuCl4- and the Shape Stabilization, Langmuir, 20(18), 7837-7843, 2004.

    Perez-Juste, J., Liz-Marzan, L. M., Carnie, S., Chan, D. Y. C., Mulvaney, P., Electric-Field-Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions, Adv. Funct. Mater., 14(6), 571-579, 2004.

    Pileni, M. P., The Role of Soft Colloidal Templates in Controlling The Size and Shape of Inorganic Nanocrystals, Nature Materials, 2(3), 145-150, 2003.

    Ramanath, G., D'Arcy-Gall, J.; Maddanimath, T., Ellis, A. V.; Ganesan, P. G., Goswami, R., Kumar, A., Vijayamohanan, K., Templateless Room-Temperature Assembly of Nanowire Networks from Nanoparticles, Langmuir, 20(13), 5583-5587, 2004.

    Sau, T. K., Murphy, C. J., Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution, J. Am. Chem. Soc., 126(28), 8648-8649, 2004.

    Shestopalov, I., Tice, J. D., Ismagilov, R. F., Multi-step Synthesis of Nanoparticles Performed on Millisecond Time Scale in a Microfluidic Droplet-based System, Lab on a Chip, 4(4), 316-321, 2004.

    Vasilev, K., Zhu, T., Wilms, M., Gillies, G., Lieberwirth, I., Mittler, S., Knoll, W., Kreiter, M., Simple, One-Step Synthesis of Gold Nanowires in Aqueous Solution, Langmuir, 21(26), 12399-12403, 2005.

    Wagner J., Kirner T., Mayer G., Albert J., Kohler J. M., Generation of Metal Nanoparticles in a Microchannel Reactor, Chemical Engineering Journal, 101 (1-3), 251-260, 2004.

    Wagner, J., Kohler, J.M., Continuous Synthesis of Gold Nanoparticles in a Microreactor, Nano Lett, 5(4), 685-691, 2005.

    Wang, H. Z., Nakamura, H., Uehara, M., Miyazaki, M., Maeda, H., Preparation of Titania Particles Utilizing the Insoluble Phase Interface in a Microchannel Reactor, Chem. Commun., (14), 1462-1463, 2002.

    Wu, B., Heidelberg, A., Boland, J. J., Mechanical Properties of Ultrahigh-strength Gold Nanowires, Nature Materials, 4(7), 525-529, 2005.

    Xia, Y, Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H., One-dimensional Nanostructures: Synthesis, Characterization, and Applications, Adv. Mater., 15(5), 353-389, 2003.

    葉宗儒,具圓形凹槽結構的微流道系統之流動特性探討及其在微混合器之應用,碩士論文,國立成功大學,2005。

    下載圖示 校內:2008-06-15公開
    校外:2008-06-15公開
    QR CODE