| 研究生: |
簡滄銘 Chien, Tsang-Ming |
|---|---|
| 論文名稱: |
以結合流體力學在連續式微流體反應器內操控金奈米線合成的實驗探討 Hydrodynamics-Assisted Synthesis of Gold Nanowires Using Continuous Microfluidic Reactors |
| 指導教授: |
魏憲鴻
Wei, Hsien-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 微流體 、微流體反應器 、界面活性劑 、金奈米線 、四氯金酸 |
| 外文關鍵詞: | microreactor, CTAB, microfluidics, HAuCl4, gold nanowires |
| 相關次數: | 點閱:103 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究目的是發展一種可用來合成金奈米材料的新方法。藉由結合反應動力學與流體力學的操控,我們可在微流體系統中獲得定義明確的金奈米線與金奈米結晶物質。這個合成反應是在一個連續式的微流體反應器中進行,藉由控制流量及化學反應條件並配合反應器設計,我們可以得到一些不尋常的金奈米結構,而這些結構是無法利用一般傳統的批式反應器來獲得。
實驗結果顯示在低流量下,會有金奈米線的生成,若流量增加,佔生成物大多數的則是具有不同形狀的金奈米結構。我們也發現反應器的設計在金奈米線的生成中扮演關鍵性的角色。我們所使用的連續式微流體反應器是由兩種不同的幾何構造所組成,一個是Tesla曲流道,另一個則是單純的直線結構,把這兩種微流體幾何結構作一適當的安排,可設計出一個最佳的微流體反應器來合成一維的金奈米線狀結構。此外,我們也提出一個合理的機制來解釋為何可利用連續式微流體反應器可合成金奈米線狀結構。此機制的特點在於流體力學之效應可提供另一新的途徑來操控過程中之時間尺度及反應動力學。這個研究不僅能為合成奈米材料提供一個新的對策,而且還具有可與其他的微流體元件進行整合的優勢,在微晶片 (lab on a chip)之應用具開發潛力。
A novel method to synthesize gold nanomaterials is reported in this thesis. A combination of reaction kinetics and hydrodynamic manipulation gives a birth of well-defined gold nanowires and nanocrystals. By controlling the flow rate in concert with proper reaction conditions and channel designs, we can obtain some unusual gold nanostructures that cannot be achieved by conventional batch methods.
The results show that well-defined one-dimensional nanowires can form at low flow rates, and a variety of nanocrystals at high flow rates. We also find that the design of a microreactor is critical to the formation of nanowires. An optimized microreactor design comprises a number of non-straight structures and straight channels. We also propose a plausible mechanism to explain the formation of gold nanowires using continuous microreactor. The novelty here is that hydrodynamic effects provide alternative routes to manipulating various time scales and hence the kinetics of the process. These effects can be only realized in continuous microreactor, but not in convectional batch reactors.
This work not only provides a new paradigm for synthesis of nanomaterials, but also could be advantageous to integrating other microfluidic devices for subsequent analyses.
Adachi, M., Mori, K., Sato, Y., Pei, L. H., Gold Nanowire Formation of 2-dimensional Network Structure with Electric Conductivity, J. of Chemical Engineering of Japan, 37(5), 604-608, 2004.
Asefa, T., Lennox, R. B., Synthesis of Gold Nanoparticles via Electroless Deposition in SBA-15, Chem. Mater., 17(10), 2481-2483, 2005.
Bhushan Bharat, Springer Handbook of Nanotechnology, Germany, Springer, 2004.
Cao Guozhong, Nanostructures and Nanomaterials: Synthesis, Properties & Applications, Imperial College Press, UK, 2004.
Chan, E. M., Alivisatos, A. P., Mathies, R. A., High-Temperature Microfluidic Synthesis of CdSe Nanocrystals in Nanoliter Droplets, J. Am. Chem. Soc., 127(40), 13854-13861, 2005.
Chan, E. M., Mathies, R. A., Alivisatos, A. P., Size-Controlled Growth of CdSe Nanocrystals in Microfluidic Reactors, Nano Lett., 3(2), 199-201, 2003.
DeMello, J., DeMello, A., Microscale Reactors: Nanoscale Products, Lab on a Chip, 4(2), 11N-15N, 2004.
Deng, J. P., Wu, C., Yang, C. H., Mou, C. Y., Pyrene-Assisted Synthesis of Size-Controlled Gold Nanoparticles in Sodium Dodecyl Sulfate Micelles, Langmuir, 21(19), 8947-8951, 2005.
Ding, Y., Wang, Z. L., Structure Analysis of Nanowires and Nanobelts by Transmission Electron Microscopy, J. Phys. Chem. B., 108(33), 12280-12291, 2004.
Edel, J. B., Fortt, R., deMello, J. C., deMello, A. J., Microfluidic Routes to The Controlled Production of Nanoparticles, Chem. Commun., (10), 1136-1137, 2002.
Evans D. Fennell, Wennerström Håkan, The Colloidal Domain, Wiley-VCH, USA, 1999.
Gall, K., Diao, J., Dunn, M. L., The Strength of Gold Nanowires, Nano Lett., 4(12), 2431-2436, 2004.
Gole, A., Murphy, C. J., Seed-Mediated Synthesis of Gold Nanorods: Role of the Size and Nature of the Seed, Chem. Mater., 16(19), 3633-3640, 2004.
Han, M. Y., Quek, C. H., Huang, W., Chew, C. H., Gan, L. M., A Simple and Effective Chemical Route for the Preparation of Uniform Nonaqueous Gold Colloids, Chem. Mater., 11(4), 1144-1147, 1999.
Hong, C. C., Choi, J. W., Ahn, C. H., A Novel in-plane Passive Microfluidic Mixer with Modified Tesla Structures, Lab on a Chip, 4(2), 109-113, 2004.
Huang Y. J., Di L., Li J. H., Beta-cyclodextrin Controlled Assembling Nanostructures from Gold Nanoparticles to Gold Nanowires, Chemical Physics Letters, 389 (1-3), 14-18, 2004.
Jana, N. R., Gram-scale Synthesis of Soluble, Near-Monodisperse Gold Nanorods and Other Anisotropic Nanoparticles, Small, 1(8-9), 875-882, 2005.
Jana, N. R., Gearheart, L., Murphy, C. J., Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles, Langmuir, 17(22), 6782-6786, 2001.
Khan, S. A., Gunther, A., Schmidt, M. A., Jensen, K. F., Microfluidic Synthesis of Colloidal Silica, Langmuir, 20(20), 8604-8611, 2004.
Maddanimath, T., Kumar, A., D'Arcy-Gall, J., Ganesan, P. G., Vijayamohanan, K., Ramanath, G., Wet-Chemical Templateless Assembly of Metal Nanowires from Nanoparticles, Chem. Commun., (11), 1435-1437, 2005.
McDonald, J. C., Whitesides, G. M., Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices, Acc. Chem. Res., 35(7), 491-499, 2002.
Murphy, C. J., Sau, T. K., Gole, A. M., Orendorff, C. J., Gao, J., Gou, L., Hunyadi, S. E., Li, T., Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications, J. Phys. Chem. B., 109(29), 13857-13870, 2005.
Ongaro, A., Griffin, F., Beecher, P., Nagle, L., Iacopino, D., Quinn, A., Redmond, G., Fitzmaurice, D., DNA-Templated Assembly of Conducting Gold Nanowires between Gold Electrodes on a Silicon Oxide Substrate, Chem. Mater., 17(8), 1959-1964, 2005.
Ottino, J. M., Wiggins, S., Introduction: Mixing in Microfluidics, Phil. Trans. R. Soc. Lond. A, 362(1818), 923-935, 2004.
Pei, L., Mori, K., Adachi, M., Formation Process of Two-Dimensional Networked Gold Nanowires by Citrate Reduction of AuCl4- and the Shape Stabilization, Langmuir, 20(18), 7837-7843, 2004.
Perez-Juste, J., Liz-Marzan, L. M., Carnie, S., Chan, D. Y. C., Mulvaney, P., Electric-Field-Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions, Adv. Funct. Mater., 14(6), 571-579, 2004.
Pileni, M. P., The Role of Soft Colloidal Templates in Controlling The Size and Shape of Inorganic Nanocrystals, Nature Materials, 2(3), 145-150, 2003.
Ramanath, G., D'Arcy-Gall, J.; Maddanimath, T., Ellis, A. V.; Ganesan, P. G., Goswami, R., Kumar, A., Vijayamohanan, K., Templateless Room-Temperature Assembly of Nanowire Networks from Nanoparticles, Langmuir, 20(13), 5583-5587, 2004.
Sau, T. K., Murphy, C. J., Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution, J. Am. Chem. Soc., 126(28), 8648-8649, 2004.
Shestopalov, I., Tice, J. D., Ismagilov, R. F., Multi-step Synthesis of Nanoparticles Performed on Millisecond Time Scale in a Microfluidic Droplet-based System, Lab on a Chip, 4(4), 316-321, 2004.
Vasilev, K., Zhu, T., Wilms, M., Gillies, G., Lieberwirth, I., Mittler, S., Knoll, W., Kreiter, M., Simple, One-Step Synthesis of Gold Nanowires in Aqueous Solution, Langmuir, 21(26), 12399-12403, 2005.
Wagner J., Kirner T., Mayer G., Albert J., Kohler J. M., Generation of Metal Nanoparticles in a Microchannel Reactor, Chemical Engineering Journal, 101 (1-3), 251-260, 2004.
Wagner, J., Kohler, J.M., Continuous Synthesis of Gold Nanoparticles in a Microreactor, Nano Lett, 5(4), 685-691, 2005.
Wang, H. Z., Nakamura, H., Uehara, M., Miyazaki, M., Maeda, H., Preparation of Titania Particles Utilizing the Insoluble Phase Interface in a Microchannel Reactor, Chem. Commun., (14), 1462-1463, 2002.
Wu, B., Heidelberg, A., Boland, J. J., Mechanical Properties of Ultrahigh-strength Gold Nanowires, Nature Materials, 4(7), 525-529, 2005.
Xia, Y, Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H., One-dimensional Nanostructures: Synthesis, Characterization, and Applications, Adv. Mater., 15(5), 353-389, 2003.
葉宗儒,具圓形凹槽結構的微流道系統之流動特性探討及其在微混合器之應用,碩士論文,國立成功大學,2005。