| 研究生: |
呂小玉 Lu, Xiao-Yu |
|---|---|
| 論文名稱: |
以吸/脫附管柱試驗探討流速對雙酚A現地Koc的影響 Assessing the influence of flow velocity on the in-situ Koc of bisphenol A by adsorption/desorption column experiments |
| 指導教授: |
陳女菀如
Chen, Wan-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 雙酚A 、現地有機碳-水分配係數 、機械混和 、管柱試驗 、脫附 |
| 外文關鍵詞: | Bisphenol A, In-situ organic carbon-water partition coefficient, Mechanical mixing, Column experiment, Desorption |
| 相關次數: | 點閱:216 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
污染物在土水之間的分佈為影響其在環境中傳輸之主要因子,因此,文獻多以批次實驗獲得的土壤-水分配係數(soil-water partition coefficient, Kd)來預測污染物的傳輸。而有機污染物如雙酚A (bisphenol A, BPA)主要累積於土壤有機質中,所以有機碳-水分配係數(organic carbon-water partition coefficient, Koc)比Kd更適合用來探討有機污染物的吸附現象。本團隊過去檢測台南急水溪及鹽水溪中的BPA存在於河川底泥及孔隙水中的濃度,並測定底泥有機碳含量以計算BPA之現地有機碳-水分配係數(in-situ Koc),結果顯示急水溪之in-situ Koc (13757 L/kg)遠大於其平衡Koc值(778 L/kg),推測可能是因為孔隙水中的BPA濃度因為水流速度大受河水稀釋而導致in-situ Koc偏離平衡甚遠。因此本研究之研究目的為以機械混和平衡試驗確認環境樣品中BPA之吸脫附狀態,與以管柱試驗探討河水流速對BPA in-situ Koc之影響。
本研究採集了急水溪中下游河段的底泥,研究結果發現經過14天的搖晃平衡後,BPA自底泥有機質中脫附,使Koc從第0天的3292 L/kg 下降至第14天 1344 L/kg,顯示現地BPA是以脫附為主,且經過14天機械混和後現地Koc會逐漸趨近平衡之Koc值。在管柱實驗中,若BPA處於吸附狀態,可觀察到流速與Koc成反比,主要原因是因為BPA在水流流速快的狀態下較難吸附於底泥而導致Koc值較小。然而若BPA處於脫附狀態,Koc值則與水流流速成正比,主要是因為水流流速快時,自底泥中脫附至水相的BPA被稀釋而導致Koc值上升。若進流水中不含BPA,則Koc會隨著流經的孔隙體積(pore volume)增加而線性增加,但若進流水中含有低濃度BPA為背景濃度,則Koc則會收斂至一大於平衡Koc之定值,本研究驗證了河流流速快慢為主宰現地Koc遠大於平衡Koc之主要因子。
The distribution of pollutants between the solid / liquid interface is an important issue in understanding the transport and adsorption of pollutants in the environment. Therefore, the soil-water partition coefficient (Kd) obtained from batch experiments was often applied to predict the movement of pollutants. Since organic pollutants such as bisphenol A (BPA) mainly accumulate on soil organic matter, organic carbon-water partition coefficient (Koc) is more suitable than Kd to investigate the sorption phenomenon of organic pollutants. Our research group detected the BPA concentration of sediments and pore water, and organic carbon content of sediment in the Jishuei River (JS river,急水溪) and Yanshuei River (YS river,鹽水溪) in Tainan to calculate the in-situ Koc. We found that in-situ Koc of JS river (13757 L/kg) was much larger than the equilibrium Koc of 778 L/kg which was from batch experiments. It was speculated that high water velocity of the JS river caused BPA in pore water to be diluted, and unable to reach equilibrium. Therefore, in this study, a mechanical mixing experiment was used to check whether the BPA samples in JS river was in the state of adsorption or desorption, and the column experiments were applied to investigate the influence of water velocity on the change of Koc.
After a 14-day mechanical mixing, the change of Koc in the sediments collected from JS river were calculated. The in-situ Koc of BPA decreased from 3292 L/kg on day-0 to 1344 L/kg on day-14 and gradually approached the value of the equilibrium batch experiment, which means that BPA in the river sediment was in the desorption state. In pulse injection column test, the Koc decreased when water velocity increased, which shows BPA was in adsorption state and harder to distribute on the sediments at higher water velocity. On the contrary, in the continuous injection column test, the Koc values were proportional to the water velocity, suggesting that BPA was in desorption state and the desorbed BPA was diluted at a high water velocity, resulting in larger Koc values. In the absence of BPA background concentration in the feed water, the Koc values increase linearly as the pore volume increases. By contrast, under the feed water containing low concentration of BPA, Koc increases with increasing in the pore volume, but gradually converges to a constant and reaches dynamic equilibrium. Thus, this study verifies that flow velocity is the key factor that dominates the in-situ Koc values far greater than the equilibrium Koc value.
Arditsoglou, A., & Voutsa, D. (2012). Occurrence and partitioning of endocrine-disrupting compounds in the marine environment of Thermaikos Gulf, Northern Aegean Sea, Greece. Marine pollution bulletin, 64(11), 2443-2452. doi:10.1016/j.marpolbul.2012.07.048
Bailey, G. W., & White, J. L. (1964). Soil-pesticide relationships, adsorption and desorption of organic pesticides by soil colloids, with implications concerning pesticide bioactivity. Journal of Agricultural and Food Chemistry, 12(4), 324-332.
Banzhaf, S., & Hebig, K. H. (2016). Use of column experiments to investigate the fate of organic micropollutants – a review. Hydrology and Earth System Sciences, 20(9), 3719-3737. doi:10.5194/hess-20-3719-2016
Bouwer, H. (1991). Simple derivation of the retardation equation and application to preferential flow and macrodispersion. Groundwater, 29(1), 41-46.
Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environmental Science and Pollution Research, 22(8), 5711-5741.
Chen, Q., Lan, Y., Shi, J., Liu, W., Zhu, B., Sun, D., & Duan, S. (2019). Levels of NP and BPA in the Pearl River Estuary, China: Fluctuations with Country Policy Changes over the Past 40 Years. International journal of environmental research and public health, 16(21), 4100.
Chiou, C. T., Peters, L. J., & Freed, V. H. (1979). A physical concept of soil-water equilibria for nonionic organic compounds. Science, 206(4420), 831-832.
Chiou, C. T., Porter, P. E., & Schmedding, D. W. (1983). Partition equilibriums of nonionic organic compounds between soil organic matter and water. Environmental Science & Technology, 17(4), 227-231. doi:10.1021/es00110a009
Corrales, J., Kristofco, L. A., Steele, W. B., Yates, B. S., Breed, C. S., Williams, E. S., & Brooks, B. W. (2015). Global assessment of bisphenol A in the environment: review and analysis of its occurrence and bioaccumulation. Dose-Response, 13(3), 1559325815598308.
Dai, S., Liu, G., Qian, Y., & Cheng, X. (2001). The sorption behavior of complex pollution system composed of aldicarb and surfactant—SDBS. Water research, 35(9), 2286-2290.
Domenico, P. A., & Schwartz, F. W. (1998). Physical and chemical hydrogeology (Vol. 506): Wiley New York.
European Commission. (2011). Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off J Eur Union.
European Commission. (2016). Commission Regulation (EU) 2016/2235 of 12 December 2016 amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards bisphenol A.
European Commssion. (2018). Commission regulation (EU) No 2018/213 of 12 February 2018 on the use of bisphenol A in varnishes and coatings intended to come into contact with food and amending regulation (EU) No 10/2011 as regards the use of that substance in plastic food contact materials. Off J Eur Union.
Fiege, H., Voges, H. W., Hamamoto, T., Umemura, S., Iwata, T., Miki, H., Fujita, Y., Buysch, H. J., Garbe, D., & Paulus, W. (2000). Phenol derivatives. Ullmann's Encyclopedia of Industrial Chemistry.
Fukuoka, T., Tatehata, H., & Mochizuki, A. (2001). Synthesis and characterization of poly (hydroxyether). I. Poly (hydroxyether) based on 2, 2‐bis (4‐hydroxyphenyl) hexafluoropropane and 2, 2‐bis (4‐hydroxyphenyl) propane. Journal of applied polymer science, 80(10), 1687-1696.
Goring, C., Laskowski, D., Hamaker, J., & Meikle, R. (1975). Environmental dynamics of pesticides. by R. Haque & VH Freed, Plenum Press, New York and London, 135.
Haque, R. (1975). Role of adsorption in studying the dynamics of pesticides in a soil environment. In Environmental dynamics of pesticides (pp. 97-114): Springer.
Hauer, A. (2007). Sorption theory for thermal energy storage. In Thermal energy storage for sustainable energy consumption (pp. 393-408): Springer.
Huang, Y., Guo, J., Yan, P., Gong, H., & Fang, F. (2019). Sorption-desorption behavior of sulfamethoxazole, carbamazepine, bisphenol A and 17α-ethinylestradiol in sewage sludge. Journal of hazardous materials, 368, 739-745.
Huang, Y., Wong, C., Zheng, J., Bouwman, H., Barra, R., Wahlström, B., Neretin, L., & Wong, M. H. (2012). Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environment international, 42, 91-99.
Im, J., & Löffler, F. E. (2016). Fate of bisphenol A in terrestrial and aquatic environments. Environmental Science & Technology, 50(16), 8403-8416.
Jiang, Y., Yuan, L., Liu, L., Shi, L., Guang, A.-l., & Mu, Z. (2018). Bisphenol A in the Yellow River: Sorption characteristics and influential factors. Journal of Hydrology, 564, 307-313.
Jin, H., & Zhu, L. (2016). Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China. Water research, 103, 343-351.
Kang, J.-H., & Kondo, F. (2002). Bisphenol A degradation by bacteria isolated from river water. Archives of environmental contamination and toxicology, 43(3), 0265-0269.
Karickhoff, S. W. (1984). Organic pollutant sorption in aquatic systems. Journal of hydraulic engineering, 110(6), 707-735.
Karickhoff, S. W., Brown, D. S., & Scott, T. A. (1979). Sorption of hydrophobic pollutants on natural sediments. Water research, 13(3), 241-248.
Lewis, J., & Sjöstrom, J. (2010). Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments. Journal of contaminant hydrology, 115(1-4), 1-13.
Li, J., Zhou, B., Liu, Y., Yang, Q., & Cai, W. (2008). Influence of the coexisting contaminants on bisphenol A sorption and desorption in soil. Journal of Hazardous Materials, 151(2-3), 389-393.
Liao, C., Liu, F., Moon, H.-B., Yamashita, N., Yun, S., & Kannan, K. (2012). Bisphenol analogues in sediments from industrialized areas in the United States, Japan, and Korea: spatial and temporal distributions. Environmental Science & Technology, 46(21), 11558-11565.
Lu, Z., Letcher, R. J., Chu, S., Ciborowski, J. J., Haffner, G. D., Drouillard, K. G., MacLeod, S. L., & Marvin, C. H. (2015). Spatial distributions of polychlorinated biphenyls, polybrominated diphenyl ethers, tetrabromobisphenol A and bisphenol A in Lake Erie sediment. Journal of Great Lakes Research, 41(3), 808-817.
Meeker, J. D., Calafat, A. M., & Hauser, R. (2010). Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environmental Science & Technology, 44(4), 1458-1463.
Melzer, D., Rice, N. E., Lewis, C., Henley, W. E., & Galloway, T. S. (2010). Association of urinary bisphenol a concentration with heart disease: evidence from NHANES 2003/06. PloS one, 5(1).
Michałowicz, J. (2014). Bisphenol A–sources, toxicity and biotransformation. Environmental toxicology and pharmacology, 37(2), 738-758.
Omar, T. F. T., Aris, A. Z., Yusoff, F. M., & Mustafa, S. (2018). Occurrence, distribution, and sources of emerging organic contaminants in tropical coastal sediments of anthropogenically impacted Klang River estuary, Malaysia. Marine pollution bulletin, 131, 284-293.
Patrolecco, L., Capri, S., De Angelis, S., Pagnotta, R., Polesello, S., & Valsecchi, S. (2006). Partition of nonylphenol and related compounds among different aquatic compartments in Tiber River (Central Italy). Water, Air, and Soil Pollution, 172(1-4), 151-166.
Phouthavong-Murphy, J. C., Merrill, A. K., Zamule, S., Giacherio, D., Brown, B., Roote, C., & Das, P. (2020). Phytoremediation potential of switchgrass (Panicum virgatum), two United States native varieties, to remove bisphenol-A (BPA) from aqueous media. Scientific Reports, 10(1), 1-10.
Pignotti, E., & Dinelli, E. (2018). Distribution and partition of endocrine disrupting compounds in water and sediment: Case study of the Romagna area (North Italy). Journal of Geochemical Exploration, 195, 66-77.
Relyea, J. F. (1982). Theoretical and experimental considerations for the use of the column method for determining retardation factors. Radioact. Waste Manage. Nucl. Fuel Cycle, 3(2), 151-166.
Rochester, J. R. (2013). Bisphenol A and human health: a review of the literature. Reproductive toxicology, 42, 132-155.
Rubin, B. S. (2011). Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. The Journal of steroid biochemistry and molecular biology, 127(1-2), 27-34.
Rutherford, D. W., Chiou, C. T., & Kile, D. E. (1992). Influence of soil organic matter composition on the partition of organic compounds. Environmental Science & Technology, 26(2), 336-340.
Salgueiro-González, N., Turnes-Carou, I., Besada, V., Muniategui-Lorenzo, S., López-Mahía, P., & Prada-Rodríguez, D. (2015). Occurrence, distribution and bioaccumulation of endocrine disrupting compounds in water, sediment and biota samples from a European river basin. Science of the total environment, 529, 121-130.
Schug, T. T., Janesick, A., Blumberg, B., & Heindel, J. J. (2011). Endocrine disrupting chemicals and disease susceptibility. The Journal of steroid biochemistry and molecular biology, 127(3-5), 204-215.
Shi, Y., Sun, Y., Gao, B., Xu, H., & Wu, J. (2019). Importance of Organic Matter to the Retention and Transport of Bisphenol A and Bisphenol S in Saturated Soils. Water, Air, & Soil Pollution, 230(2), 43.
Staples, C. A., Dome, P. B., Klecka, G. M., Oblock, S. T., & Harris, L. R. (1998). A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere, 36(10), 2149-2173.
Stewart, M., Olsen, G., Hickey, C. W., Ferreira, B., Jelić, A., Petrović, M., & Barcelo, D. (2014). A survey of emerging contaminants in the estuarine receiving environment around Auckland, New Zealand. Science of the total environment, 468, 202-210.
Suzuki, T., Nakagawa, Y., Takano, I., Yaguchi, K., & Yasuda, K. (2004). Environmental fate of bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity. Environmental Science & Technology, 38(8), 2389-2396.
Tan, R., Liu, R., Li, B., Liu, X., & Li, Z. (2018). Typical endocrine disrupting compounds in rivers of northeast China: occurrence, partitioning, and risk assessment. Archives of environmental contamination and toxicology, 75(2), 213-223.
Tiwari, M., Sahu, S., & Pandit, G. (2016). Distribution and estrogenic potential of endocrine disrupting chemicals (EDCs) in estuarine sediments from Mumbai, India. Environmental Science and Pollution Research, 23(18), 18789-18799.
Trasande, L., Attina, T. M., & Blustein, J. (2012). Association between urinary bisphenol A concentration and obesity prevalence in children and adolescents. Jama, 308(11), 1113-1121.
US‐EPA. (1999). Understanding variation in partition coefficient, Kd, values.
US Environmental Protection Agency. (2010). Bisphenol A (BPA) Action Plan.(CASRN 80-05-7).
Wang, B., Huang, B., Jin, W., Zhao, S., Li, F., Hu, P., & Pan, X. (2013). Occurrence, distribution, and sources of six phenolic endocrine disrupting chemicals in the 22 river estuaries around Dianchi Lake in China. Environmental Science and Pollution Research, 20(5), 3185-3194.
Wang, L., Ying, G.-G., Zhao, J.-L., Liu, S., Yang, B., Zhou, L.-J., Tao, R., & Su, H.-C. (2011). Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools. Environmental Pollution, 159(1), 148-156.
Xu, X., Wang, Y., & Li, X. (2008). Sorption behavior of bisphenol A on marine sediments. Journal of Environmental Science and Health, Part A, 43(3), 239-246.
Ying, G.-G., Kookana, R. S., & Dillon, P. (2003). Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material. Water research, 37(15), 3785-3791.
Ying, G. G., & Kookana, R. S. (2005). Sorption and degradation of estrogen‐like‐endocrine disrupting chemicals in soil. Environmental Toxicology and Chemistry: An International Journal, 24(10), 2640-2645.
Zakari, S., Liu, H., Tong, L., Wang, Y., & Liu, J. (2016). Transport of bisphenol-A in sandy aquifer sediment: Column experiment. Chemosphere, 144, 1807-1814. doi:10.1016/j.chemosphere.2015.10.081
Zeng, G., Zhang, C., Huang, G., Yu, J., Wang, Q., Li, J., Xi, B., & Liu, H. (2006). Adsorption behavior of bisphenol A on sediments in Xiangjiang River, Central-south China. Chemosphere, 65(9), 1490-1499.
行政院環境保護署. (2019). 108年化學物質環境流布調查成果手冊.
周晏如. (2016). 環境中有機質對於雙酚 A 於土水介面分配之影響. 成功大學環境工程學系學位論文(2016 年), 1-76.
林居慶, 邱., 秦靜如,洪瑋濃. (2014). 土壤中有機污染物濃度與實際污染強度關聯性研究計畫,行政院環境保護署環境檢驗所103 年委託專案研究計畫.
經濟部水利署. (2017). 急水溪水系本流及支流白水溪治理計畫.