簡易檢索 / 詳目顯示

研究生: 蕭亦翔
Hsiao, Yi-Shiang
論文名稱: 磁控濺鍍成長氧化鋅銦錫薄膜之研究及其應用
Investigation of ZITO Thin Film by co-sputter and its application
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 97
中文關鍵詞: 磁控濺鍍氧化鋅銦錫薄膜電晶體光感測器
外文關鍵詞: sputter, ZITO, TFT, Phototransistor
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們在不同成長條件下研製並探討氧化鋅銦錫(ZITO)薄膜電晶體之影響並創新應用於紫外光電晶體及光感測器。
    首先,我們應用非晶氧化鋅銦錫薄膜做為主動層與二氧化矽做為閘極介電層來製作薄膜電晶體,經由改變氧氣流量,我們得到最佳氧流量條件為百分之六。接著為了提升元件的效率,我們改變氧化錫靶材的濺鍍功率以改變錫在薄膜中的含量。我們發現利用氧化鋅銦錫薄膜為主動層之薄膜電晶體之效率隨著錫含量的提升而下降,為了再次驗證錫含量對元件的影響。我們固定氧化錫靶材濺鍍功率,改變氧化鋅銦靶材之濺鍍功率。其結果符合前面所述。此外,我們指出元素含量組成對元件之影響,然後藉由最佳的成長條件,我們做出最好的氧化鋅銦錫薄膜電晶體之元件特性場效遷移率為13.183cm2/Vs、臨界電壓0.39V/decade、次臨界擺幅0.280V、電流開關比4.25×105。
    在實驗第二部分,我們利用氮化矽為薄膜電晶體中的介電層材料。
    利用氮化矽為介電層之氧化鋅銦錫薄膜電晶體,其電特性連介電壓為0.57V、電流開關比為105、次臨界擺幅為0.381V/decade、場效遷移率為9.73cm2/Vs。在與相同製程條件之下除了介電層材料為二氧化矽的氧化鋅銦錫薄膜電晶體相比,其特性能明顯提升的原因推測在於氮化矽有較高的介電係數及氫離子之鈍化效果。
    在實驗第三部分,我們利用氧化鋅銦錫薄膜製作紫外光感測器及光電晶體。在製作紫外光電晶體時我們可以發現從其主動層區域量測之光暗電流改變之響應值相對光感測器較大。且其光敏感率可達到103~104。因此我們相信氧化鋅銦錫電晶體應用於光偵測中可有較低的功率損耗與較高的光響應。

    In this dissertation, amorphous zinc indium tin oxide (ZITO) thin film transistors (TFTs) were fabricated at different deposition condition. We applied these thin films in thin film transistor, photodetector and phototransistor.
    First, we apply ZITO thin film as channel layer to the fabrication of TFT with SiO2 gate dielectric. By varying the flow rate of oxygen, we found the optimal oxygen rate was 6%. And to further improve our devices, we varied the SnO2 RF power to change the Sn content. We found the performance was decreasing with increasing the Sn content. To confirm this situation, we sustained SnO2 RF power and decreased the IZO RF power, that made Sn content also increased. The result showed the same way, too. Additionally, we report the effect of cation composition on the device performance. Then, base
    on our optimal deposition condition, It was found that the field-effect mobility were 13.183 cm2/Vs, threshold voltage of 0.39V, subthreshold swing of 0.28 V/decade and Ion/Ioff of 4.25×105 for ZITO TFT with SiO2 gate dielectric.
    Furthermore, we used transparent conducting oxide (TCO) as our electrodes. Through fast and easy process, we fabricated ZITO-based thin film transistor with TCO electrodes.
    In the second part of our experiment, the fabrication of ZITO thin film transistor with a SiN dielectric on a glass substrate was demonstrated. The room temperature deposited ZITO channel with SiN exhibits threshold voltage of 0.57 V, drain-source current on/off ratio of 105, subthreshold swing of 0.381 V/decade, and field-effect mobility of 9.73 cm2/Vs. Compared with SiO2 dielectric, the performance of ZITO-based TFT deposited in same condition have improved a lot. These results could be contributed to the higher k material for the increased higher gate capacitance and hydrogen passivation.
    In the third part, a deep-UV and near-UV ZITO photodetector and phototransistor were fabricated. It was also found that the phototransistor rejection ratio for Ion-off ratio and responsivity of drain current with various gate bias (IDS-VGS) under dark and under illumination for ZITO channel layer can even reach 3 orders and 4 orders of magnitude respectively which is better than ZITO photodetector. Therefore, we believe that these results represent a significant step toward achieving high photosensitivity. A ZITO TFT is used in deep UV photodetection exhibits low power consumption and high photosensivity potentially.

    摘要 I Abstract III Acknowledgement V Figure captions IX Table Caption XII Chapter 1 Introduction 1 1-1 Background and Motivation 1 1-2 Oxide semiconductor thin film 2 1-2-1 ZnO-based transparent conductive oxide (TCO) thin films 3 1-2-2 Compound transparent conductive oxide (TCO) thin films 4 1-2-3 Amorphous semiconducting materials 6 1-3 The application of amorphous Zn-In-Sn-O (ZITO) thin film transistors 7 1-4 Overview of dielectric materials for thin film transistor 9 1-5 Overview of Ultraviolet phototransistors 10 1-6 Organization of Thesis 12 References 17 Chapter 2 Important Parameter and Fabrication System 23 2-1 Important Parameters 23 2-1-1 Field-Effect Mobility 23 2-1-2 Threshold Voltage (VT) 24 2-1-3 Ratio (Ion/off) 24 2-1-4 Subthreshold Swing (ss) 24 2-1-5 Responsivity 24 2-2 Fabrication and Analyze System 25 2-2-1 RF Sputtering System 25 2-2-2 Atomic Force Microscopes 27 2-2-3 X-ray Diffraction Analysis (XRD) 28 2-2-4 Energy-dispersive X-ray spectroscopy (EDS) 29 2-2-5 Secondary ion mass spectrometry(SIMS) 30 References 35 Chapter 3 ZITO films for thin film transistors 36 3-1 Introduction 36 3-2 Fabrication of ZITO TFTs with SiO2 dielectric layers 38 3-3 The physical analysis of ZITO thin film 39 3-4 The parameter optimized of ZITO thin film transistors 40 3-4-1 Vary oxygen flow rate 40 3-4-2 Vary SnO2 power 43 3-4-3 Vary IZO power 45 3-5 Using the transparent conductive oxide for thin film transistor electrodes 47 3-5-1 Introduction 47 3-5-2 Fabrication Transparent ZITO TFT 48 3-5-3 Current-voltage (I-V) characteristics of transparent ZITO TFTs 49 3-6 Conclusion 50 References 69 Chapter 4 ZITO TFTs with SiN dielectric layers 71 4-1 Introduction 71 4-2 Fabrication of ZITO TFTs with SiN dielectric layers 72 4-3 The physical analysis of SiN / ZITO thin film 73 4-4 Current-voltage (I-V) characteristics of ZITO TFTs with SiN dielectric layers 74 4-5 Conclusion 75 References 79 Chapter 5 Phototransistors with cosputtered ZITO channel layer 81 5-1 Introduction 81 5-2 82 5-2-1 ZITO phtodetector 82 5-2-2 ZITO phototransistor 83 5-3 Current-Voltage Characteristics analyzing 84 5-3-1 Current-Voltage Characteristics of photodetector 84 5-3-2 Current-Voltage Characteristics of phototransistor 85 5-4 Conclusion 88 References 94 Chapter 6 Conclusion and future work 95 6-1 Conclusion 95 6-2 Future work 97

    Ch1
    [1] W. E. Spear and P. G. Le Comber, Solid State Communications. 17, 1193–1196(1975).
    [2] H. Hosono, Journal of Non-Crystalline Solids.352,851–858 (2006).
    [3] K. Nomura, A. Takag, T. Kamiya, H. Ohta, M. Hiranoand H. Hosono,Japanese Journal of Applied Physics. 45, 4303–4308(2006).
    [4] L. Zhang, H. Zhang, Y. Bai, J. W. Ma, J. Cao, X. Y. Jiang, Z. L. Zhang, Solid State Communications. 146 , 387–390(2008).
    [5] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature,432,489–491(2004).
    [6] O. K.Varghese, M. Paulose, C. A. Grimes, Nature Nanotechnology.4, 592-597(2009).
    [7] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang,Nature Materials. 4, 455-459(2005).
    [8] Chopra K. L., Major S. and Pandya D. K, Thin Solid Films. 102, 1-46(1983).
    [9] B.Y. Oh, M. C. Jeong, D. S. Kim, W. Lee, J. M. Myoung, Journal of Crystal Growth.281, 475–480(2005).
    [10] K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo and S. Niki, Thin Solid Films. 431-432, 369-372 (2003).
    [11] M.F.A.M. van Hest, M.S. Dabney, J.D. Perkins, D.S. Ginley, and M.P. Taylor, Applied Physics Letters.87, 032111(2005).
    [12] H. M. Ali, H. A. Mohamed, and S. H. Mohamed, Eur, Journal of Applied Physics. 31, 87-93(2005).
    [13] H. Yue1, A. Wu, J. Hu, X. Zhang, T. Li, Materials Science Forum. 675-677, 1275-1278(2011).
    [14] S. S. Lin, J. L. Huang, P. Sajgalik, Surface and Coatings Technology.185, 254–263(2000).
    [15] J. H. Lee, S. Y. Lee, B. O. Park, Materials Science and Engineering B. 127, 267–271(2006).
    [16] R. AlAsmar, S. Juillaguet, M. Ramonda, A. Giani, P. Combette, A. Khoury, A. Foucaran, Journal of Crystal Growth. 275, 512–520 (2005).
    [17] Y. Zhang, J. He, Z. Ye, L. Zhou, J. Huang, L. Zhu, B. Zhao, Thin Solid Films. 458 , 161–164(2004).
    [18] S. T. Shishiyanu, Teodor S. Shishiyanu, Oleg I. Lupan, Sensors and Actuators B. 107, 379–386(2005).
    [19] B. Y. Oh, M. C. Jeong, W. Lee, and J. M. Myoung, Journal of Crystal Growth. 274, 453–457(2005).
    [20] K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films. 102, 1-46(1983).
    [21] A. L. Dawar and J. C. Joshi, Journal of Materials Science. 19, 1–23(1984).
    [22] T. Minami,Journal of Vacuum Science & Technology A. 17, 1765-1772(1999).
    [23] T. Minami, H. Sato and H. Nanto, Japanese Journal of Applied Physics. 24, L781-L784(1985).
    [24] J. H. Park, K. J. Ahn, K. I.Park, S. I. Naand H. K. Kim, Journal of Physics D: Applied Physics. 43, 115101-115107(2010).
    [25] H.Enoki, T. Nakayama, J.Echigoya,PhysicaStatus Solid A. A129,181-191 (1992).
    [26] H. Un'no, N. Hikuma, T. Omata, N. Ueda, T. Hashimoto and H. Kawazoe, Japanese Journal of Applied Physics. 32, L1260-1262(1993).
    [27] T. Minami, H. Sonohara, T. Kakumu, and S. Takata, Japanese Journal of Applied Physics.34, L971-974(1995).
    [28] T. Minami, Y. Takeda, S. Takata, T. Kakumu, Thin Solid Films. 13, 308-309(1997).
    [29] T. Minami, Thin Solid Films. 516, 5822-5828(2008).
    [30] Y. Shigesato, D. C. Paine, and T. E. Haynes: Adv. Mater. (Weinheim, Ger.) 4, 503 (1994).
    [31] J. Cui, A. Wang, N. L. Edleman, J. Ni, P. Lee, N. R. Armstrong, and T. Marks: Adv. Mater. (Weinheim, Ger.) 13,1476(2001).
    [32] Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, Applied Physics Letters. 68, 2699-2701(1996).
    [33] D.H Kim, M.R. Park, H.J. Lee and G.H. Lee, Applied Surface Science.253, 409-411(2006).
    [34] H. K. Kim, J. H. Bae, J. M. Moon, S. W. Kim, S. W. Jeong, D. G. Kim, and J. W. Kang, Solid State Phenomena. 399, 124-126(2007).
    [35] J. H. Bae, J. M. Moon, J. W. Kang, H. D. Park, J. J. Kim, W. J. Cho, and H. K. Kim, Journal of The Electrochemical Society. 154, J81-J85(2007).
    [36] C. W. Ow-Yang, H. Y. Yeom, D. C. Paine, Thin Solid Films. 516, 3105-3111(2008).
    [37] D. S. Liu, C. S. Sheu, C. T. Lee, and C. H. Lin, Thin Solid Films. 516,3196-3203(2008).
    [38] H. Hosono, N. Kikuchi, N. Ueda and H. Kawazoe, Journal of Non-Crystalline Solids.198–200, 165–169(1996).
    [39] M. Orita, H. Ohta and M. Hirano,Philosophical Magazine.81, 501-515(2001).
    [40] N. F. Mott, Advances in Physics. 26, 363–391(1977).
    [41] M. Orita and M. Hirano, Physical Review B. 66, 35203(2002).
    [42] C. S. Yang, L. L. Smith, C. B. Arthur, and G. N. Parsons, Journal of Vacuum Science & Technology B. 18, 683–689(2000).
    [43] E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L.Pereira and R. Martins, Advanced Materials. 17, 590-594 (2005).
    [44] J. H. Shin, J. S. Lee, C. S. Hwang, S. H. K. Park, W. S. Cheong, M. Ryu, C.-W. Byun, J. I. Lee and H. Y. Chu, ETRI Journal. 31, 62–64(2009).
    [45] B. Yaglioglu, H. Y. Yeom, R. Beresford and D. C. Paine, Applied Physics Letters. 89, 062103 (2006).
    [46] Y. L. Wang , F. Ren , W. Lim , D. P. Norton , S. J. Pearton , I. I. Kravchenko and J. M. Zavada, Applied Physics Letters. 90, 232103 (2007).
    [47] W. B. Jackson, R. L. Hoffman and G. S. Herman, Applied Physics Letters. 87, 193503 (2005).
    [48] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong and D. A. Keszler, Applied Physics Letters. 86, 013503 (2005).
    [49] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo and H. D. Kim, Applied Physics Letters. 90, 212114(2007).
    [50] J. S. Park, J. K. Jeong, Y. G. Mo and H. D. Kim, Applied Physics Letters. 90, 262106(2007).
    [51] H. Xiao, Princeton-Hall Inc., New Jersey(2001).
    [52] Y. K. Moon, S. Lee, D. H. Kim, D. H. Lee, C. O. Jeong, and J. W. Park,Japanese Journal of Applied Physics.48, 031301-1 – 031301-4(2009).
    [53] R. Navamathavan, J. H. Lim, D. K. Hwang, B. H. Kim, J. Y. Oh, J. H. Yang, H. S. Kim and S. J. Park, Journal of the Korean Physical Society. 48, 271-274(2006).
    [54] E. Fortunato, A. Pimentel, L. Pereira, A. Gonc_alves, G. Lavareda, H. Aguas, I. Ferreira, C.N. Carvalho, R. Martins,Journal of Non-Crystalline Solids. 338–340, 806–809(2004).
    [55] M. Maaza, O. Nemraoui, A.C. Beye, C. Sella and T. Derry, Solar Energy Materials & Solar Cells. 90, 111–119(2006).
    [56] K. L. Chopra, S.Major and D. K. Pandya, Thin Solid Films. 102, 1-46(1983).
    [57] S. H. Kim, S. E. Kim, J. H. Park, S. H. Kim and M. S. Kim, J. Korean Phys. Soc.43, 868-874(2003).
    [58] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S.Gopalan, K. Onishi, and J. C. Lee, IEEE Elec. Dev.Lett.21, 181-183(2000).
    [59] B. H. Lee, L. Kang, R. Nieh, and J. C. Lee,Appl. Phys. Lett.76,1926-1928(2000).
    [60] M. A.Quevedo-Lopez, M. El-Bouanani, B. E.Gnade, R. M. Wallace,M. R.Visokay, M. Douglas, M. J. Bevan, and L. Colombo, J. Appl. Phys. 92, 3540-3550(2002).
    [61] K. S. Hwang, Y. S.Jeon, S. B. Kim, C. K. Kim and J. S. Oh,J. Korean Phys Soc.43,754 (2003).
    [62] H. Y. Yu, N. Wu, M. F. Li, C. Zhu, B. J. Cho, D. L. Kwong, C. H. Tung, J. S.Pan, J. W. Chai, W. D. Wang, D. Z. Chi, C. H.Ang, J. Z. Zheng, and S. Ramanathan, Appl. Phys. Lett.81, 3618-3620(2002).
    [63] H.H. Zhang, C.Y. Ma, and Q.Y. Zhang, Vacuum.83, 1311-1316(2009).
    [64] Campbell J C 1985 Semiconductors and Semimetal vol. 22D, ed W T Tsang (New York: Academic)
    [65] A. Star, Y. Lu, K. Bradley, andG.Gruner,NanoLett. 4,1587, (2004).
    [66] Y. Huang, and R. I.Hornsey, IEEE Trans. Elec. Dev.50,2570(2003).
    [67] G.Chaji, A. Nathan, and Q. Pankhurst, Appl. Phys. Lett.93, 203504(2008).
    [68] N. M. Johnson, and A. Chiang, Appl. Phys. Lett.45, 1102(1984).
    [69] Y. Kaneko, N. Koike, K.Tsutsui, and T.Tsukada, Appl. Phys. Lett.56,650(1990).
    [70] C. S. Choi, H. S. Kang, W. Y. Choi, H. J. Kim, W. J. Choi, D. J. Kim, K. Jang, T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg,Sensors. 9, 6504–6529(2009).
    Ch2
    [1] Donald A. Neamen, Semiconductor physics and devices: basic principles-3rd ed., McGraw-Hill, New York, (2003)
    [2] J. L. Vossen and W. Kern, Thin Flim Processes, Academic Press, New York. 131 (1978).
    [3] C. Y. Chang and S.M. Sze, “ULSI Technology”, McGraw-Hill, New York. 380 (1996).
    [4] S. I. Shah, Handbook of Thin Film Process Technology, Institute of Physics Pub, Bristol, UK. A3.0:1 (1995).
    [5] B.D. Cullity, Elements of X-ray diffraction, 2nd ed, Addison Wesley,Canada.(1978).
    [6] Joseph Goldstein. Scanning Electron Microscopy and X-Ray Microanalysis. (2003)
    [7] A. Benninghoven, F. G. Rüdenauer, and H. W. Werner, Wiley, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications.(1987)
    Ch3
    [1] M.W.J.Prins, K.O. Grosse-Holz, G. M¨uller, J.F. M. Cillessen, J.B.Giesbers, R.P. Weening, and R.M. Wolf, Appl. Phys. Lett. 68, 3650 (1996).
    [2] A. Ennaoui, M. Weber, R. Scheer, H.J. Lewerenz, Sol. Energy Mater. Sol. Cells. 54, 277 (1998).
    [3] Q.H. Li, T. Gao, Y.G. Wang, and T.H. Wang, Appl. Phys. Lett. 86, 12, 123117-1–123117-3 (2005).
    [4] M. Delvaux, and S.D. Champagne, Biosens. Bioelectron. 8, 943–951 (2003).
    [5] X.L. Zhu, I. Yuri, X. Gan, I. Suzuki, and G.X. Li, Biosens. Bioelectron. 22, 1600–1604 (2007).
    [6] F.F. Zhang, X.L. Wang, S.Y. Ai, Z.D. Sun, Q. Wan, Z.Q. Zhu, Y.Z. Xian, L.T. Jin, K. Yamamoto, Anal. Chim. Acta 519, 155–160 (2004).
    [7] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003).
    [8] R.L. Hoffman, B.J. Norris, and J.F. Wager, Appl. Phys. Lett. 82, 733 (2003).
    [9] P.F. Carcia, R.S. McLean, M.H. Reilly, and G. Nunes, Appl. Phys. Lett. 82, 1117 (2003).
    [10] R.E. Presley, C.L. Munsee, C.H. Park, D. Hong, J.F. Wager and D. Keszler, J. Phys. D: Appl. Phys. 37, 2810 (2004).
    [11] E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G Pimentel, A.M.F Gonc¸alves, A.J.S. Marques, L.M.N. Pereira, and R.F.P. Martins Adv. Mater. 17, 590 (2005).
    [12] H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, J. Non-Cryst. Solids 165, 198–200 (1996).
    [13] H. Hosono, M. Yasukawa, and H. Kawazoe, J. Non-Cryst. Solids 203, 334 (1996).
    [14] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
    [15] B. Yaglioglu, H.Y. Yeon, R. Beresford, and D.C. Paine, Appl. Phys. Lett. 89, 062103 (2006).
    [16] M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, J. Phys. D, 40, 1335 (2007).
    [17] H.Q. Chiang, J.F. Wager, R.L. Hoffman, J. Jeong, and D.A. Keszler Appl. Phys. Lett. 86, 013503 (2005).
    [18] K. J. Saji, M. K. Jayaraj, K. Nomura, T.Kamiya, and H.Hosono,J.Electrochem.155,390-395 (2008).
    [19] G. E. Totten, S. R. Westbrook, and R. J. Shah, Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing, 1st ed. West Conshohocken, PA: ASTM International (2003).
    [20] J.F. Wager, Science. 300, 1245(2003)
    [21] Y.Y. Lin, S.F. Nelson, T.N. Jackson, IEEE Trans. Electron Devices .44, 325, (1997)
    Ch4
    K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science. 300, 5623, 1269–1271 (2003).
    [2] Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films. 516, 5899–5902 (2008).
    [3] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature. 432, 488–492(2004).
    [4] K. Takechi, M. Nakata, K. Azuma, H. Yamaguchi, and S. Kaneko, IEEE Tran. Electron. Dev. 56, 2165–2168(2009).
    [5] Y. K. Moon, S. Lee, D. H. Kim, D. H. Lee, C. O. Jeong, and J. W. Park, Jpn. J. Appl. Phys. 48, 031301(2009).
    [6] H. S. Bae, J. H. Kim, and S. Im,Electrochem. Solid-State Lett.7, 279(2004).
    [7] J. Jo, O. Seo, E. Jeong, H. Seo, B. Lee, and Y. I. Choi,Jpn. J. Appl. Phys. 46, 2493(2007).
    [8] C. A. Wolden, T. Barnes, J. B. Baxter, and E. S. Aydil, J. Appl. Phys.97, 043522(2005).
    [9] H. S. Bae and S. Im, J. Vac. Sci. Technol. B. 22,1191(2004).
    [10]H. Gleskova, S.Wagner, V. Gasparik, and P. Kovac, J. Electrochem. Soc.148, 370(2001).
    [11] R. Chow, W. A. Lanford, W. K. Ming, and R. S. Rosier, J. Appl. Phys.53, 5630(1982).
    [12] Y. Kuo, Vacuum. 51, 741(1998).
    [13] K. Remashan and K. N. Bhat,IEEE Trans. Electron Devices. 49, 343(2002).
    [14] G. P. Pollack,W. F. Richardson, S. D. S.Malhi, T. Bonifield, H. Shichijo, S. Banerjee,M. Elahy, A. H. Shah, R.Womack, and P. K. Chatterjee, IEEE Electron Device Lett.5, 468(1984).
    [15] C. H.Wu,H. H. Hsieh, C. W. Chien, and C. C.Wu, J. Display Technol. 5, 515(2009).
    Ch5
    [1] S. J. Chang, T. K. Ko, Y. K. Su, Y. Z. Chiou, C. S. Chang, S. C. Shei, J. K. Sheu, W. C. Lai, Y. C. Lin, W. S. Chen, and C. F. Shen, IEEE Sensors J. 6, 406–411 (2006).
    [2] P. C. Chang, C. L. Yu, S. J. Chang, K. H. Lee, C. H. Liu, and S. L.Wu, IEEE J. Quan. Electron.43,1060–1064 (2007).
    [3] M. Razeghi, Proc. IEEE. 90, 1006–1014, (2002).
    [4] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, and S. L. Wu, IEEE J. Quan. Electron. 44, 916–921 (2008).
    [5] M. C. Hamilton and J. Kanicki, IEEE J. Sel. Top. Quan. Electron. 10, 840-848(2004).
    [6] M. C. Hamilton. S. Martin and J. Kanicki, IEEE Tran. Electron. Dev.51,877-885(2004).
    [7] H. S. Bae, M. H. Yoon, J. H. Kim, and SeongilIm, Appl. Phys. Lett.83, 5313-5315(2003).
    [8] Kwok K. Ng, Ed., Wiley-IEEE Press.(2002).

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE