| 研究生: |
吳維明 Wu, Wei-Ming |
|---|---|
| 論文名稱: |
應用微電泳機制提高胞膜電穿孔轉殖效率之研究 Enhancement of Transfection Efficiency for Electroporation Utilizing Micro-Electrophoresis |
| 指導教授: |
林裕城
Lin, Yu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 電泳 、胞膜電穿孔 、基因轉殖 、微機電製程技術 |
| 外文關鍵詞: | electrophoresis, electroporation, gene delivery, microfabrication |
| 相關次數: | 點閱:94 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討利用電泳與胞膜電穿孔實驗,來增加基因轉殖晶片上特定區域的轉殖效果,胞膜電穿孔是一種讓細胞膜外的物質進入細胞膜內的技術,其原理利用電脈衝所形成的電場,使細胞膜表面造成可逆性的電崩潰,產生瞬間的微小孔洞來使物質進入,實驗上採用pEGFP-N1質體,在晶片上轉殖進入成骨細胞(MC3T3E)中。
本實驗利用微機電製程技術在玻璃底材上製作出薄膜電極,並利用高分子材料定義細胞反應區大小,在胞膜電穿孔前將DNA注入且蓋滿反應區,利用上下電極所產生的電場來驅動帶負電的DNA,讓DNA聚集在通正電的指叉狀晶片電極上,使DNA濃度提高,接著進行胞膜電脈衝轉殖實驗。在電泳過程中,利用一維解析解與二維數值模擬來探討DNA濃度的變化,由研究的結果顯示,在電脈衝之前,DNA在晶片表面上的濃度可增加到原本的數千倍,因此,藉由DNA電泳後濃度的提高來增加傳統電脈衝的轉殖效果,本實驗成功地利用電泳技術提高胞膜電穿孔晶片的轉殖效率。
The present paper investigated the site-specific enhancement of in vitro gene delivery using electrophoresis and electroporation microchips. Electroporation is a technique that introduces foreign materials into cells by applying impulses with an electric field to create multiple transient pores in the cell membrane through a dielectric breakdown of it. The pEGFP-N1 plasmids were transfected into osteoblasts cells (MC3T3E) on the microchip.
The electroporation chip with thin film electrodes were fabricated on a glass slide using microfabrication technologies. The region of cell culture cavity defines by rectangular macromolecular compounds. The electric field for DNA attracting results in the increment of DNA concentration on the surface of these powered electrodes. Then the electric power was switched to the interdigital electrodes to continue the electroporation process. The DNA concentration during electrophoresis on the microchip was investigated by one-dimensional steady-state approximation and two-dimensional transient simulation in this study. The study demonstrated the DNA concentration close to the cell surface increased up to several thousands-fold before electroporation so that improve the transfection efficiency comparing to the conventional electroporation. The present work successfully enhanced the site-specific transfection utilizing the attracting electric field on the electroporation microchip.
[1] G.A. Hofmann and G.A. Evans, Electronic genetic-physical and biological aspects of cellular electromanipulation, IEEE Engineering in Medicine and Biology Magazine, 12, 6-25, 1986.
[2] R.D. Jamieson, M.P. Bodger and P.S. Bodger, Transfection by electroporation: cell gene transfer using electrical impulses, a new process in blood cancer research, Science, 136, 41-44, 1989.
[3] H. Lambert, R. Pankov, J. Gauthier and R. Hancock, Electroporation-mediated uptake of proteins into mammalian cells, Biochemistry and Cell Biology, 68, 729-734, 1990.
[4] L.H. Yin, S.Q. Fu, T. Nanakorn, F. Garcia-Sanchez, I. Chung, R. Cote, G. Pissorno, E. Hanania, S. Heimfeld, R. Crystal and A. Deisseroth, Results of retroviral and adenoviral approaches to cancer gene therapy, Stem Cells, 16 Suppl 1, 247-250, 1998.
[5] J.H. Lee and M.J. Welsh, Enhancement of calcium phosphate-mediated transfection by inclusion of adenovirus in coprecipitates, Gene Therapy, 6, 676-682, 1999.
[6] R.M. Schmid, H. Weidenbach, G.F. Draenert, S. Liptay, H. Luhrs and G. Adler, Liposome mediated gene transfer into rat oesophagus, Gut, 41, 549-556, 1997.
[7] R. Han, C.A. Reed, N.M. Cladel and N.D. Christensen, Immunization of rabbits with cottontail rabbit papillomavirus E1 and E2 genes: protective immunity induced by gene gun-mediated intracutaneous delivery but not by intramuscular injection, Vaccine, 18, 2937-2944, 2000.
[8] G. Zhang, V. Budker and J.A. Wolff, High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA, Human Gene Therapy, 10, 1735-1737, 1999.
[9] V. Budker, T. Budker, G. Zhang, V. Subbotin, A. Loomis and J.A. Wolff, Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor-mediated process, The Journal of Gene Medicine, 2, 76-88, 2000.
[10] H. Liang, W.J. Purucker, D.A. Stenger, R.T. Kubiniec and S.W. Hui, Uptake of fluorescence-labeled dextrans by 10T 1/2 fibroblasts following permeation by rectangular and exponential-decay electric field pulses, Biotechniques, 6, 550-558, 1988.
[11] M.P. Rols and J. Teissie, Electropermeabilization of mammalian cells quantitative analysis of the phenomenon, Biophysical Journal, 58, 1089-1098, 1990.
[12] T.D. Xie, L. Sun and T.Y. Tsong, Study of mechanisms of electric field-induced DNA transfection I DNA entry by surface binding and diffusion through membrane pores, Biophysical Journal, 58, 13-19, 1990.
[13] I.G. Abidor, L.H. Li and S.W. Hui, Studies of cell pellets: I. Electrical properties and porosity, Biophysical Journal, 67, 418-426, 1994.
[14] R.A. Meldrum, M. Bowl, S.B. Ong and S. Richardson, Optimisation of electroporation for biochemical experiments in live cells, Biochemical and Biophysical Research Communications, 256, 235-239, 1999.
[15] Y.C. Lin, C.M. Jen, M.Y. Huang, C.Y. Wu and X.Z. Lin, Electroporation Microchips for Continuous Gene Transfection, Sensors and Actuators . B: Chemical/Biochemical Sensors, 79, 137-143, 2001.
[16] T. Nishi, K. Yoshizato, S. Yamashiro, H. Takeshima, K. Sato, K. Hamada, I. Kitamura, T. Yoshimura, H. Saya, J.I. Kuratsu and Y. Ushio, High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation, Cancer Research, 56, 1050-1055, 1996.
[17] G.L. Prasanna, T. Panda and P.P. Rao, Transformation of intact cells of Saccharomyces cerevisiae by square wave pulses using castellated microelectrodes, Bioprocess Engineering, 16, 265-268, 1997.
[18] J.A. Lundqvist, F. Sahlin, M.A.I. Aberg, A. Stromberg, P.S. Eriksson and O. Orwar, Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes, Proceedings of the National Academy of Sciences of the United States of America, 95, 10356-10360. 1998.
[19] Y. Huang and B. Rubinsky, Micro-Electroporation: Improving the Efficiency and Understanding of Electrical Permeabilization of Cells, Biomedical Microdevices, 3, 145-150, 2000.
[20] Y.C. Lin and M.Y. Huang, Electroporation microchips for in-vitro gene transfection, Journal of Micromechanics and Microengineering, 11, 542-547, 2001.
[21] J. Gehl, T.H. Sorensen, K. Nielsen, P. Raskmark, S.L. Nielsen, T. Skovsgaard and L.M. Mir, In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution, Biochimica et Biophysica Acta, 1428, 233-240. 1999.
[22] R. Heller, M. Jaroszeski, A. Atkin, D. Moradpour, R. Gilbert, J. Wands and C. Nicolau, In vivo gene electroporation ang expression in rat liver, FEBS Letter, 389, 225-228, 1996.
[23] G.A. Hofmann, S.B. Dev, S. Dimmer, and G.S. Nanda, Electroporation Therapy: A New Approach for the Treatment of Head and Neck Cancer, IEEE Transactions on Bio-Medical Engineering, 46, 6, 752-759, 1999.
[24] M.R. Prausnitz, A practical assessment of transdermal drug delivery by skin Electroporation, Advanced Drug Delivery Reviews, 35, 61-76, 1999.
[25] A.K. Banga, S. Bose and T.K. Ghosh, Review article-Iontophoresis and electroporation: comparisons and contrasts, International Journal of Pharmaceutics, 179, 1-19. 1999.
[26] V. Vijayanathan, T. Thomas and T.J. Thomas, DNA nanoparticles and development of DNA delivery vehicles for gene therapy, Biochemistry, 41(48), 14085-14094, 2002.
[27] V. Legrand, P. Leissner, A. Winter, M. Mehtali and M. Lusky, Transductional targeting with recombinant adenovirus vectors, Current Gene Therapy, 2(3), 323-339, 2002.
[28] M. Trucco, P.D. Robbins, A.W. Thomson and N. Giannoukakis, Gene therapy strategies to prevent autoimmune disorders, Current Gene Therapy, 2(3), 341-354, 2002.
[29] D. Luo and W.M. Saltzman, Enhancement of transfection by physical concentration of DNA at the cell surface, Nature Biotechnology, 18, 893-895, 2000.
[30] F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Krüger, B Gänsbacher and C. Plank, Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo, Gene Therapy, 9, 102-109, 2002.
[31] T. Kotnik and D. Miklavcic, Analytical Description of Transmembrane Voltage Induced by Electric Fieldson Spheroidal Cells, Biophysical Journal, 79, 670-679, 2000
[32] D.A. Saville and O.A. Palusinki, Theory of Electrophoretic Separations, Part I: Formulation of a Mathematical Model, AIChE Journal, 32(2), 207-214, 1986.
[33] M.G. Giridharan and A. Kirshnan, An Implicit Numerical Model for Electrophoretic Systems, ASME International Congress and Exposition, 66, 61-68, 1998.
[34] E. Stellwagen and N.C. Stellwagen, Determining the electrophoretic mobility and translational diffusion coefficients of DNA molecules in free solution, Electrophoresis, 23, 2794-2803, 2002.
[35] N.C. Stellwagen, S. Magnusdottir, C. Gelfi and P.G. Righetti, Measuring the translational diffusion coefficients of small DNA molecules by capillary electrophoresis, Biopolymers, 58, 390-397, 2001.
[36] 黃明遠, 胞膜電穿孔基因轉殖晶片之研究, 國立成功大學工程科學研究所, 民國九十年.
[37] http://www.sigmaaldrich.com
[38] http://www.biocenter.helsinki.fi/bi/peranen/Kotisivunlinkit/Vectors/pEGFP-N1.htm