簡易檢索 / 詳目顯示

研究生: 王柏元
Wang, Po-Yuan
論文名稱: 新穎金屬硫族化合物應用於非線性光學及薄膜太陽能電池吸收層
New Metal Chalcogenide Materials for Nonlinear Optical and Thin Film Solar Cell Absorber
指導教授: 許桂芳
Hsu, Kuei-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 59
中文關鍵詞: 金屬硫族化合物非線性光學材料太陽能電池吸收層
外文關鍵詞: Metal chalcogenide, NLO materials, Absorber layer in solar cells
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文成功合成出三種新穎的金屬硫族化合物K1.00Zn1.46(1)Se2.00 (1)、K1.00Mg0.22(3)Zn1.28(2)Se2.00 (2) 、K1.00Mg0.27(2)Zn1.23(1)Se2.00 (3),並著重
    化合物2的結構及光學特性來介紹。化合物 2的結構屬於對稱中心的點群,其晶系及空間群為Monoclinic P21/n,而單位晶格的軸長為a = 7.4614(2) Å,b = 5.9685(2) Å,c = 10.9680(3) Å,V = 467.65(2) Å3。此化合物之結構由混填MgZn陽離子與Se陰離子以四面體形成二維的層狀結構,沿著b軸無限延伸排列,K陽離子則是參雜在層與層之間。
    化合物 2之純相合成方法如下,將反應物在800°C高溫初步熔融後,以每小時降溫5ºC至500ºC,即可獲得純相。以熱差分析儀測定其熔點為552 oC,再結晶點為531 oC。本化合物之能隙值由紫外光可見光近紅外光吸收光譜儀鑑定為直接能隙2.27 eV。經由KP&APS系統測量屬於p型半導體。利用波長458nm的雷射光照射後,在615 nm附近有強烈的光致放光訊號,意味著此化合物除了在紅外非線性光學材料具有潛力外,也有機會製作成太陽能電池中的吸收層。目前正在進行三倍頻量測以及將化合物 2製作成不同厚度的薄膜,期許能夠有良好的太陽能轉換效率。

    Three novel metal chalcogenides of (1) K1.00Zn1.46(1)Se2.00 (2) K1.00Mg0.22(3)Zn1.28(2)Se2.00 (3) K1.00Mg0.27(2)Zn1.23(1)Se2.00 have been synthesized by solid-state reaction at 800 oC. We will focus on structural and optical properties of compound 2. Compound 2 crystallizes in a centrosymmetric space group of Monoclinic P21/n with cell parameters a = 7.4614(2) Å, b = 5.9685(2) Å, c = 10.9680(3) Å ,V = 467.65(2) Å3, and Z = 4. The structure of this compound is constructed by MSe4 tetrahedra (M = Mg/Zn) to form a two-dimensional layered structure. The layers are stacking along the b axis while K+ cations are inserted between layers. Due to distorted structure, it has a potential to become infrared nonlinear optical material. The band gap measured by UV-vis-NIR absorption spectra is estimated to be around 2.27 eV, which belongs to a direct band gap material as further analyzed by the Kubelka-Munk function. The differential thermal analysis of compound 2 shows melting point around 552 ºC and recrystallization point around 531 ºC. The single crystal displays a strong photoluminescence signal near 615nm using an incident laser at 458 nm. Therefore, it has the potential to be made into an absorber layer in solar cells. Finally, the third harmonic generation (THG) measurement of compound 2 is in progress and it is made into thin films of different thickness, hoping to have a good solar energy conversion efficiency.

    摘要I 誌謝IX 目錄X 表目錄 XIII 圖目錄 XIV 附錄 XVI 第一章 緒論 1 第二章 金屬硫族化物之合成與鑑定 6 2.1 單晶合成方法 6 2.2 純相合成方法 8 2.3單晶X光繞射分析 (Single Crystal X-ray Diffraction Analysis) 9 2.4能量散佈光譜分析 (Energy Dispersive Spectrum Analysis, EDS) 11 2.5粉末X光繞射分析 (Powder X–ray Diffraction Analysis) 12 2.6差示熱分析 (Differential Thermal Analysis, DTA) 13 2.7紫外光–可見–近紅外光光譜分析 (UV–Vis–NIR Reflection Spectrum Analysis) 14 2.8表面凱爾文探針掃描光譜儀與光電子能譜儀 (Kelvin Probe and Air Photoemission Spectroscopy,KP&APS) 16 2.9微光激發螢光光譜分析 ( Micro-PL Spectrum Analysis) 16 2.10拉曼光譜分析 (Raman Spectroscopy Analysis) 16 2.11表面粗度儀 (Alpha-Step Profilometer) 17 2.12原子力顯微鏡 (Atomic Force Microscope) 17 2.13三倍頻訊號量測分析 (Third Harmonic Generation Measurement Analysis) 18 第三章 結果與討論 19 3.1 EDS 元素分析 19 3.2單晶結構 20 3.3純相合成及分析 29 3.4熔點及再結晶點分析 31 3.5能隙(Energy gap)分析 32 3.6 能階圖 (Energy diagram)分析 33 3.7光激發螢光分析 35 3.8薄膜製程 36 3.8.1高真空熱蒸鍍系統 36 3.8.2厚度與粗糙度分析 37 3.8.3拉曼光譜分析 39 3.8.4粉末繞射分析 40 3.8.5 EDS元素分析 41 3.8.6 能隙(Energy gap)分析 42 第四章 結論 43 參考文獻 44 附錄 47

    [1] Ok, K. M.; Chi, E. O.; Halasyamani, P. S., Chem Soc Rev, 2006, 35 (8), 710-717.
    [2] Vakhshoori, D.; Wu, M. C.; Wang, S., Appl. Phys. Lett, 1988, 52 (6), 422-424.
    [3] Cotter, D.; Manning, R. J.; Blow, K. J.; Ellis, A. D.; Kelly, A. E.; Nesset, D.; Phillips, I. D.; Poustie, A. J.; Rogers, D. C., Science, 1999, 286(5444), 1523-1528.
    [4] Ohmer, M. C.; Pandey, R., MRS Bulletin, 1998, 23 (7), 16-22.
    [5] Solntsev, V. P.; Tsvetkov, E. G.; Gets, V. A.; Antsygin, V. D., Journal of Crystal Growth, 2002, 236 (1), 290-296.
    [6] Boyd, R. W., Nonlinear Optics(Third Edition), Academic Press, Burlington, 1-67, 2008.
    [7] Boyd, G.; Kasper, H.; McFee, J.; Storz, F., IEEE Journal of Quantum Electronics, 1972, 8(12), 900-908.
    [8] Chemla, D. S.; Kupecek, P. J.; Robertson, D. S.; Smith, R. C., Optics Communications, 1971, 3(1), 29-31.
    [9] Yang, L. Q.; Run, Y.; Jiang, X. M.; Liu, B. W.; Zeng, H. Y.; Guo, G. C., Journal of Materials Chemistry C, 2020, 8(11), 3688-3693.
    [10] Brant, J. A.; Clark, D. J.; Kim, Y. S.; Weiland, A.; Aitken, J. A., Inorganic Chemistry, 2015, 54(6), 2809-2819.
    [11] Huang, Y.; Meng, X.; Gong, P.; Yang, L.; Lin, Z.; Chen, X.; Qin, J., Journal of Materials Chemistry C, 2014, 2(20), 4057-4062.
    [12] Nahory, R. E.; Fan, H. Y., Physical Review, 1967, 156(3), 825– 833.
    [13] Aven, M.; Marple, D. T. F.; Segall, B., Journal of Applied Physics, 1961, 32(10), 2261– 2265.
    [14] Hall, J. F., Journal of the Optical Society of America, 1956, 46(12), 1013– 1015.
    [15] Hooge, F. N., Zeitschrift fur Physikalische Chemie, 1960, 24(3_4), 275– 282.
    [16] Ra, H. S.; Ok, K. M.; Halasyamani, P. S., Journal of the American Chemical Society, 2003, 125(26), 7764– 7765.
    [17] Halasyamani, P. S.; Poeppelmeier, K. R., Chemistry of Materials, 1998, 10 (10), 2753– 2769.
    [18] Kunz, M.; Brown, I. D., Journal of Solid State Chemistry, 1995, 115 (2), 395– 406.
    [19] Sun, C. F.; Hu, C. L.; Xu, X.; Ling, J. B.; Hu, T.; Kong, F.; Long, x. f.; Mao, J. G., Journal of the American Chemical Society, 2009, 131 (27), 9486– 9487.
    [20] Jin, M.; Cui, Q.; Mukhtar, E.; Ding, D., Journal of Physics: Condensed Matter, 2002, 14(44), 11037–11040.
    [21] Patel, K. D.; Solanki, G. K.; Gandhi, J. R.; Patel, S. G., Chalcogenide Letters, 2009, 6(1), 45–50.
    [22] Kühnelt, M.; Wagner, H. P., Journal of Nonlinear Optical & Materials, 1998, 7(4), 553–561.
    [23] Yin, W.; Lyer, A. K.; Li, C.; Yao, J.; Mar, A., Journal of Alloys and Compounds, 2017, 708, 414–421.
    [24] Li, H. Y.; Jie, W. Q.; Zhang, S. A.; Sun, Z. R.; Xu, K. W., Chinese Physics, 2006, 15(10), 2407-2414.
    [25] Stolterfoht, M.; Le Corre, V. M.; Feuerstein, M.; Caprioglio, P.; Koster, L. J. A.; Neher, D., ACS Energy Letters, 2019, 4(12), 2887-2892.
    [26] Islam, R.; Saraswat, K., Scientific Reports, 2018, 8, 1-11.
    [27] Sylla, A.; Touré, S.; Vilcot, J. P., Open Journal of Modelling and Simulation, 2017, 5, 218-231.
    [28] Herron, J. A.; Kim, J.; Upadhye, A. A.; Huber, G.W.; Maravelias, C. T., Energy & Environmental Science, 2015, 8(1), 126-157.
    [29] Meyers, R. A., Encyclopedia of sustainability science and technology, Springer, New York, 9079-9109, 2012.
    [30] Ito, K.; Nakazawa, T., Japanese Journal of Applied Physics, 1988, 27(11), 2094-2097.
    [31] Song, X.; Ji, X.; Li, M.; Lin, W.; Xi, J.; Zhang, H., International Journal of Photoenergy, 2014, 2014, 1-11.
    [32] Zeng, X.; Tai, K. F.; Zhang, T.; Ho, C. W. J.; Chen, X.; Huan, A.; Sum, T. C.; Wong, L. H., Solar Energy Materials and Solar Cells, 2014, 124, 55-60.
    [33] Weiss, T. P., Electrical Characterization of Kesterite Thin Film Absorbers And Solar Cells, University of Luxembourg, Luxembourg, 1-160, 2015.
    [34] Nakane, A.; Tampo, H.; Tamakoshi, M.; Fujimoto, S.; Kim, K. M.; Kim, S.; Shibata, H.; Niki, S.; Fujiwara, H., Journal of Applied Physics, 2016, 120(6), 064505.

    下載圖示 校內:2025-07-20公開
    校外:2025-07-20公開
    QR CODE