簡易檢索 / 詳目顯示

研究生: 李宬諺
Li, Chen-Yan
論文名稱: 聚苯胺衍生物於電致變色與發光元件之研究
Study on polyaniline derivatives in electrochromic and light emitting devices
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 126
中文關鍵詞: 電洞注入層電致變色聚苯胺衍生物之應用
外文關鍵詞: polyaniline derivatives, hole injection layer, electrochromic
相關次數: 點閱:73下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   共軛高分子近來在光電產業的應用相當的廣泛,本論文中以聚苯胺衍生物在電致變色元件與發光元件中作應用。利用聚(2,5-二甲氧基苯胺)來製作電致電色元件,比起聚苯胺有較低的操作電位與較快速的應答時間。在有機發光元件領域中,最重要的挑戰在於:如何使載子注入達到平衡,進而提升亮度以及電流的效率值,在OLED中常用來做電洞傳輸層的材料為TPD,本實驗室利用結構類似TPD的導電高分子,磺酸化聚二苯胺(SPDPA),用來作有機發光元件的電洞注入層。
    (1)聚(2,5-二甲氧基苯胺)的電致變色行為
      PDMA利用摻雜不同結構酸作電化學合成,分別使用硫酸、甲基磺酸、聚苯乙烯磺酸的水溶液中,利用循環伏安法在-0.2V~0.8V的電位區間,掃描速率20mV/s 的條件下聚合而成。再利用電化學與光譜電化學的方式進行評估,是否在不同結構的酸摻雜對電致變色的行為會有所改善,並配合掃描式電子顯微鏡觀察高分子膜表面的結構。在PDMA-PSS的高分子複合膜中,將有高對比、較穩定的電致變色特性。

      PDMA-PSS與WO3以及高分子電解質(B-PEI-H3PO4)進行電致變色元件的製作與特性探討。本元件特性相較之前的研究,大幅的改善了元件穩定性與高度的光學對比,連續操作10000次的穩定度測試,還保有50%左右的光學對比值。
    (2)磺酸化聚二苯胺作電洞注入層的特性
      利用SPDPA當作電洞注入層,並選擇不同能障(band gap)的發光層的有機發光元件,來探討SPDPA對於元件特性的影響。除此之外,我們還製作單純傳遞電洞的元件,探討SPDPA對於電洞傳遞的影響,並作電激發光光譜與原子力顯微鏡,嘗試探討其對元件行為的影響。

     Recently, conjugated polymers have been used extensively in electro -optical industry. The main objective of the present is to study polyaniline derivatives in electrochromic and light-emitting device. In further study, it presented that poly(2,5-dimethoxy aniline) (PDMA) exhibits lower operating voltage from reduced state to oxidized state than PANI. And PDMA also showed a response time (9 s), which is smaller than that of PANI (22 s). In the study of PLED, one of the most important challenges is overcoming balance charge and recombination in order to enhance the life time and luminous efficiency. TPD (N, N’-diphenyl- N, N’-bis(3-methylphenyl)-[1,1’-biphenyl] -4,4’-diamine) owing arlyamine structure is a suitable candidate for hole transport layer in OLED. We use sulfonated poly(diphenylamine) (SPDPA) with similar TPD structure as an extra hole injection material ultilized in PLED device.
    (1) Electrochromic properties of PDMA
     We synthesized conducting polymer by electrochemical way in different structural acid as electrolyte: Sulphuric acid, methane sulfonic acid, and polystyrene sulfuric acid. Electrochemical polymerization of (2, 5-dimethoxy -aniline) was performed via cyclic voltammetry method at a scan rate of 20 mV/s. We proceeded to estimate the electrochromic characteristics of PDMA deposited on ITO with different dopants by spetroelectrochemical methods. Then, we selected a suitable dopant in the process of polymerization for modifying electrochromic behaviors of PDMA.
     PDMA-PSS composite shows higher optical contrast and better stability behaviors. For fabricating the electrochromic device, PDMA-PSS was deposited on indium tin oxide (ITO) coated glass and used as an electrode. Film of tungsten oxide (WO3) on ITO glass was used as the other electrode with H3PO4 doped branched poly(ethyleneimine ) as polymer electrolyte. The optical contrast of the device was improved by incorporating PSS into PDMA matrix. The device retained nearly 50 % of their optical contrast after 10,000 double steps informing the superior performance of PDMA/PSS in the EC device.
    (2) Sulfonated poly(diphenylamine) as hole injecting material
     The PLED was fabricated using SPDPA as a hole-injection layer for studying the performance and simultaneously comparing with PLED using PEDOT-PSS as hole-injection layer. And then, we fabricate hole-only device and measured EL spectral, AFM image to identify its mechanism.

    目錄 中文摘要 i 英文摘要 iii 致謝 v 目錄 vi 圖目錄 x 表目錄 xv 第一章 序論 1 1-1 前言 1 1-2 共軛高分子 2 1-2-1 共軛高分子的起源 2 1-2-1 共軛高分子的分類 3 1-2-3 導電機制 4 1-2-4 共軛高分子之合成方法 5 1-2-4-1 化學聚合 6 1-2-4-2 電化學聚合 7 1-3 聚苯胺衍生物 8 1-3-1 環取代苯胺衍生物 9 1-3-2 N取代苯胺衍生物 10 1-3-3 磺酸化聚苯胺 11 1-4 電致變色元件之發展 12 1-4-1 電致變色原理 12 1-4-2 導電性高分子應用於電致變色元件之優點 13 1-4-3 電致變色元件製作 15 1-4-4 電致變色元件發展現況 16 1-5 有機電激發光元件的發展 19 1-5-1 有機電激發光分類 21 1-5-2 OLED與PLED的比較 22 1-5-3 OLED元件發展現況 23 1-5-4 電激發光原理 24 1-5-5 元件原理 25 1-6 研究動機 28 第二章 摻雜不同結構酸對聚(2,5-二甲氧基苯胺)之電化學與電致變色行為之影響 42 2-1 前言 42 2-2 實驗部分 43 2-2-1 藥品與裝置 43 2-2-2 DMA之電化學合成及電化學物性分析 44 2-2-3 紫外光/可見光光譜 44 2-2-4高分子表面型態 44 2-3 結果與討論 45 2-3-1 聚(2,5-二甲氧苯胺)之氧化還原特性 45 2-3-2 聚(2,5-二甲氧苯胺)之電化學行為 47 2-3-4 高分子表面型態(SEM) 48 2-3-5 聚(2,5-二甲氧苯胺)之光譜電化學特性 48 2-3-6 聚(2,5-二甲氧苯胺)之電致變色特性與評估 50 2-4 結論 51 第三章 聚(2,5-二甲氧苯胺)與聚苯乙烯磺酸之高分子複合材料於高效能電致變色元件製作及特性探 68 3-1 前言 68 3-2 實驗部分 70 3-2-1 聚(2,5-二甲氧苯胺)與聚苯乙烯磺酸複合材料之合成 70 3-2-2 三氧化鎢(WO3)薄膜之製備 70 3-2-3 電致變色元件之製作 71 3-2-4 氧化還原特性 71 3-2-5 電致變色特性 71 3-3 結果與討論 72 3-3-1 單一電極之電化學研究 72 3-3-2 單一電極之光譜電化學研究 73 3-3-3 電致變色元件之電致變色特性 74 3-4 結論 77 第四章 磺酸化聚二苯胺作電洞注入層之研究 87 4-1 前言 87 4-2 實驗部分 89 4-2-1 藥品 89 4-2-2 磺酸化二苯胺的製備 90 4-2-3 發光元件的組裝 90 4-2-4 光電特性量測 91 4-3 結果與討論 91 4-3-1 電壓-電流-亮度特性分析 92 4-3-2 SPDPA於不同發光高分子作電洞注入層的特性探討 92 4-3-3 使用高功函數金屬電極製作元件之特性分析 94 4-3-4 原子力顯微鏡(AFM)對高分子膜表面的探討 95 4-3-5 穿透度(Transmittance)與電激發光圖譜(EL spectra) 95 4-4 結論 96 第五章 總結 112 參考文獻 113 著作 125 自述 126

    1. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang and A.J. Heeger, J. Chem. Soc. Chem. Commun., 16, 578 (1977).
    2. S Lefrant, L.S. Lichtman, M. Temkin, D.C. Fichten, D.C. Miller, G.E. Whitwell and J.M. Burlich, Solid State Commun., 29, 191 (1979).
    3. R. N. McDonald and T. W. Campbell, J. Am. Chem. Soc., 82, 4669 (1960).
    4. G. A. Lapitskii, S. M. Makin and A. A. Berlin, Vysokomol. Soldin., 9, 1274 (1967).
    5. W. Haertel, G. Kossmehl, G. Maneeke, W. Wille, D. Woehrle and D. Zerpner, Angew. Makromol. Chem., 29, 307 (1973).
    6. G. Kossmehl and Ber. Bunsenges. Phys. Chem., 83, 417 (1979).
    7. L. W. Shacklette, H. Eckhardt, R. R. Chance and R. H. Banghman, J. Chem. Soc. Chem. Commun., 854 (1980).
    8. P. Pfluger and O. B. Street, J. Chem. Phys., 80, 544 (1984).
    9. A. F. Diaz, J. Chem. Soc. Chem. Commun., 635 (1979).
    10. A. F. Diaz, K. K. Kanazawa, J. I. Castillo, J. A. Logan, "Conductive Polymers", (R. B. Seymour, Ed.,) Plenum Press, New York (1981).
    11. E. M. Genies, G. Bidan and A. F. Diaz, J. Electroanal. Chem., 149, 101 (1983).
    12. R. Jansson, H. Arwin, R. Bjorklund and I. Lundstrom, Thin Solid Films, 125, 205 (1980).
    13. A. F. Diaz, A. Matninez, K. K. Kanazawa and M. Salmon, J. Electroanal. Chem., 130, 181 (1980).
    14. G. Tourillon and F. Garnier, J. Electroanal Chem., 135, 173 (1982).
    15. G. Tourillon and F. Gamier, J. Electroanal. Soc., 130, 2042 (1983).
    16. R. J. Waltman, J. Bargon and A.F. Diaz, J. Phys. Chem., 87, 1459 (1983).
    17. J. J. Ohsawa, K. Kaneto and K. Yoshino, Jap. J. App. Phys., 23, L663 (1984).
    18. G. B. Street, T. C. Clarke, R. H. Geiss, V.Y. Lee, A. Nazzal, P. Pflunger and J. C. Scott, J. Phys. (Paris), C3, 599 (1983).
    19. K. K. Kanazawa, A. F. Diaz, M. T. Krounbi and G.. B. Street, Synth. Met., 4, 119 (1981).
    20. A. F. Diaz and J. A. Logan, J. Electroanal. Chem., 111, 111 (1980).
    21. S. A. Chen and C. C. Tsai, Macromolecules, 26, 2234 (1993).
    22. J. W. Chevalierr, J. Y. Bergeron and L. H. Dao, J. Am. Chem. Soc., 25, 3325 (1992).
    23. M. Ranger and M. Leclerc, Synth. Met., 84, 85 (1997).
    24. Y. Wei, J. Tan, A. G. MacDiarmid, J. G. Masters, A. L. Smith and D. Li, JCSCC, 7, 552 (1994).
    25. E. M. Genies and M. Lapkowski, J. Electroanal. Chem., 236, 189 (1987).
    26. K. Sasaki, M. Kaya. J. Yano, A. Kitani and A. Kunai, J. Electroanal. Chem., 215, 401 (1986).
    27. Y. Wei, X. Tang, Y. Sun and W. W. Focke, J. Polym. Sci. Chem. Edn., 27, 2385 (1989).
    28. T. Kobayashi, H. Yoneyama and H. Tamura, J. Electroanal. Chem., Interfacial Electrochem., 177, 281 (1984).
    29. M. Kancko, H. Nagamura and T. Shimora, Makromol. Chem., Rapid Commun., 8, 179 (1987).
    30. Y. Cao, A. Andreatta, A. J. Heeger, and P. Smith, Polymer, 30, 2305 (1989).
    31. A. G. MacDiarmid, S. K. Manohar, J. C. Masters, Y. Sun, H. Weis and A. J. Epstein, Synth. Met., 41-43, 621 (1991).
    32. K. Tzou and R. V. Gregory, Synth. Met., 47, 267 (1992).
    33. Y. Wei, G.-W. Jang and C. C. Chan, J. Polym. Sci. Part-C. Polymer Letters, 28, 219 (1990).
    34. Y. Wei, K. F. Hsueh and G.-W. Jang, Polymer, 35, 3572 (1994).
    35. J. Stejskal, P. Kratochvil, and M. Spirkova, Polym., 36, 4135 (1995).
    36. N. Gospodinova, L. Terlemezyan, P. Mokreva and K. Kossev, Polymer, 34, 2434 (1993).
    37. N. Gospodinova, P. Mokreva and L. Terlemezyan, Polymer, 36, 3585 (1995).
    38. J. Preiza, I. Lundstrom and T. Skothiem, J. Electrochem. Soc., 129, 1685 (1982).
    39. S. L. Mu and D. H. Sun, Synth. Met., 41-43, 3085 (1991).
    40. H. J. Yang and A. J. Bard, J. Electroanal. Chem., 369, 193 (1994).
    41. D. E. Stilwell and S. M. Park, J. Electrochem. Soc., 135, 2254 (1988).
    42. S. L. Mu and J. Q. Kan, Electrochim. Acta, 41, 1593 (1996).
    43. T. J. Kemp, P. Moore and G. R. Quick, J. Chem. Res., 1981, 301 (1981).
    44. A. Malinauskas and R. Holze, Electrochim. Acta, 44, 2613 (1999).
    45. A. Malinauskas and R. Holze, Ber. Besenges. Phys. Chem., 101, 1859 (1997).
    46. A. Malinauskas and R. Holze, Electrochim. Acta, 43, 2413 (1998).
    47. Y. F. Fong, and J. B. Svhlenoff, Polymers, 36, 639 (1995)
    48. A. G. MacDiarmid and A. J. Heeger, Synth. Met. 1, 101 (1979)
    49. K. –I. Nakayama, S. –Y. Gujimoto and M. Yokoyama, Appl. Phys. Lett., 82, 4584 (2003).
    50. M. Leclerc, J. Guay and L.H. Dao, Macromolecules, 22, 649 (1989).
    51. A.A. Athawale, B.A. Deore and M.V. Kulkami, Mater. Chem. Phys., 60, 262 (1999).
    52. Y. Wei, W.W. Focke, G.E. Wuck, A.R. and A.G. MacDiarmid, J. Phys. Chem., 93, 495 (1989).
    53. L.X. Wang, X.B. Jing and F.S. Wang, Synth. Met., 41, 745 (1991).
    54. F.A. Viva, E.M. Andrade, F.V. Molina and M. Florit, J. Electroanal. Chem., 471, 180 (1999).
    55. D. Goncalves, B. Matrenko and L.O.S. Bulhães, J. Electroanal. Chem., 415, 107 (1996).
    56. Gazotti, N. Comisso, G.D’Aprano and M. Leclerc, Adv. Mater., 4, 749 (1992).
    57. G. Pistoia and R. Rosati, Electrochim. Acta, 3, 333 (1994).
    58. M. Mazur, P. Krysiński, Electrochim. Acta, 46, 3963 (2001).
    59. F.R. Díaz, C.O. Sánchez, M.A. del Valle, L.H. Tagle, J.C. Bernede and Y. Tregouet, Synth. Met., 92, 99 (1990).
    60. W.E. Rudzinski, L. Thrower, R. Sutcliffe and M. Bahrami, Synth. Met., 68, 199 (1995).
    61. D. Zhou, P.C. Innis, G.G. Walace, S. Shimizu and S.I. Maeda, Synth. Met., 114, 287 (2000).
    62. A. Malinauskas and R. Holze, Ber. Bussenger. Phys. Chem., 101, 1859 (1997).
    63. A. Malinauska and R. Holze, Electrochim. Acta, 44, 2613 (1999).
    64. A. Malinauska and R. Holze, J. Solid State Electrochem., 3, 239 (1999).
    65. K. Chiba, T. Ohsaka and N. Oyama, J. Electroanal. Chem., 217, 239 (1987).
    66. N. Comisso, S. Daoli, G. Zotti, S. Zecchin, R. Salsomaso and G. Mengoli, J. Electroanal. Chem., 255, 97 (1988).
    67. T.C. Wen, L.M. Huang and A. Gopalan, J. Electrochem. Soc., 148, D9 (2001).
    68. W.C. Chen, T.C. Wen and A. Gopalan, J. Electrochem. Soc., 148, E427 (2001).
    69. J.Y. Lee, X.H. Su and C.Q. Cui, J. Electroanal. Chem., 367, 71 (1994).
    70. J.Y. Lee and C.Q. Cui, J. Electroanal. Chem., 403, 109 (1996).
    71. H.S.O. Chan, S.C. Ng, W.S. Sim, K.L. Tan and B.T.G. Tan, Macromolecules, 25, 6029 (1992).
    72. M.T. Nguyen and A.F. Diaz, Macromolecules, 28, 3411 (1995).
    73. C.H. Yang and T.C. Wen, J. Electrochem. Soc., 141,2624 (1994).
    74. C.H. Yang and T.C. Wen, J. Appl. Electrochem., 24, 166 (1994).
    75. L.H. Dao, J. Guay and M. Leclerc, Synth. Met., 29, E383 (1989).
    76. J. Guay, R. Paynter and L.H. Dao, Macromolecules, 23, 23 (1990).
    77. J.Y. Lee and A.J. Epstein, J. Am. Chem. Soc., 112, 2800 (1990).
    78. C.H. Yang and T.C. Wen, J. Appl. Electrochem., 24, 166 (1994).
    79. H. Tang, A. Kitani, and S. Ho, Electrochim. Acta, 42, 3421 (1997).
    80. S.A. Chen and G.W. Hwang, J. Am. Chem. Soc., 116, 7939 (1994).
    81. Y. Yue, Z.H. Wang, K.R. Cromack, A.J. Epstein and A.G. MacDiarmid, J. Am. Chem. Soc., 113, 2665 (1991).
    82. A.A. Karyakin, A.K. Stakhara and A.K. Yatstimirshy, J. Electroanal. Chem., 371, 259 (1994).
    83. Y.Wei, W.W.Focke, G.E.Wuck, A.R. and A.G. MacDiarmid, J.Phys.Chem. ,93,495 (1989).
    84. A.A. Karyakin, I.A. Maltsev and L.V. Lukachova, J. Electroanal. Chem., 402, 217 (1996).
    85. C. G. Granuvist, E. Hvendano and A. Azens. Thin Solid Films. 442, 201 (2003).
    86. C. G. Granuvist, Handbook of Inorganic Electrochromic Materials, Elsevier, Amsterdam, The Netherlands, 1995, reprinted 2002.
    87. C. G. Granuvist. Solar Energy Mater. Solar Cells. 60, 201 (2000).
    88. C. L. Gaupps, D. M. Welsh, R. D. Rauh and J. R. Reynolds. Chem. Mater., 14, 3964 (2002).
    89. J. Tamimoto, S. Uchida, T. Kubo and Y. Nishikitani. J. Electrochem. Soc., 50, H235 (2003).
    90. K. C. Ho. J. Electrochem. Soc., 139, 1099 (1992).
    91. L. D. Kadam and P. S. Patil. Solar Engery. Mater. Solar Cells. 70, 15 (2001).
    92. C. M. Lampert. Solar Engery. Mater. Solar Cells. 11, 1 (1984).
    93. S. K. Deb, Philos. Mag. 27, 801 (1973).
    94. M. A. Depaoli, A. F. Nogueira, D. A. Machado and C. Longo, Electrochimica Acta. 46, 4243 (2000).
    95. W. A. Gazotti. Jr., G. C. Miceli, A. Geri and M. A. Depaoli. Adv. Mater., 10, 60 (1998).
    96. K. Bange and T. Gambke. Adv. Mater., 2, 10 (1990).
    97. W. A. Gazotti, G. C. Miceli, A. Berlin and M. A. Depaoli, Adv. Mater., 10, 1522 (1998).
    98. E. M. Girotto, M. –A. Depaol, J. Braz. Chem. Soc., 10, 3944 (1999).
    99. F. Dichot, S. Ferrere, R. J. Pitts, B. A. Gregg, J. Electrochem. Soc., 146, 4324 (1999).
    100. D.Cummins, G. Boschloo, M. Ryan, D. Corr, S. Nagaraja and D. Fitzmaurice, J. Phys. Chem. B., 104, 11449 (2000).
    101. G. Boshloo and D. Fitzmaurice, J. Phys. Chem. B., 103, 7860 (1999).
    102. H. W. Heuer, R. Wehrmann and S. Kirchmeyer, Advanced Functional Materials 12, 89 (2002).
    103. P. Chandrasekhar, B. J. Zay, G. C. Birur, S. Rawal, E. A. Pierson, L. Kauder and T. Swanson, Advanced Functional Materials 12, 95 (2002).
    104. A. A.Argun, A. Cirpan and J. R. Reynolds, Adv. Mater. 15, 1338 (2003).
    105. L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik and J. R. Reynolds, Adv. Mater., 12, 481 (2002).
    106. I. Schwendeman, C. L. Guupp, J. M. Hancock, L. B. Groenendaal and J. R. Reynolds, Advanced Function Materials 13, 541 (2003).
    107. E. Smela, Adv. Mater., 16, 11 (1999).
    108. L. M. Huang, T. C. Wen and A. Gopalan, Synth. Met., 130, 155 (2002).
    109. L. M. Huang, T. C. Wen and A. Gopalan, Electrochimica Acta 46, 2463 (2001).
    110. T. C. Wen, L. M. Huang and A. Gopalan, J. Electrochem. Soc., 148, D9 (2001).
    111. S. Taunier, G. Guery, J. –M. Tarascon, Electrochim. Acta 44, 3219 (1999).
    112. K. –C. Ho. Electrochim. Acta 44, 3227 (1999).
    113. K. –C. Ho, L. –C. Chen, C. –C. Lee, Proc. Soc. Photo-Opt. Instrum. Eng., 3788, 120 (1999).
    114. B. P. Jelle, G. Hagen, J. Appl. Electrochem., 29, 1103 (1999).
    115. R. Lechner, L. K Thomas, Solar Energy Mater. Soalr Cells 54, 139 (1998).
    116. X. Zhang, L. Su, Z. Lu, Jap. J. Appl. Phys., 38, 770 (1999).
    117. A. Pennisi, F. Simone, G. Barletta, G. Di Marco, M. LAnza, Electrochim. Acta 44, 3237 (1999).
    118. D. S. Lee, D. D. Lee, H. R. Huang, J. H. Pail, J. S. Huh, J. O. Lim, J. J. Lee, J. Mater. Sci. Mater. Electr., 12, 41 (2001).
    119. J. M. G. Cowie, in : J. R. MacCallum, C. A. Vincent (Eds), Polymer Electrolyte Reviews-1, Elsevier, Essex, 1987, p. 69.
    120. W. Wieczorek, K. Such, Z. Florjanczyk, J. Przyluski, Electrochim. Acta 37, 1565 (1992).
    121. J. L. Acosta, E. Morales, J. Appl. Polym. Sci., 60, 1185 (1996).
    122. S. Kohjiva, S. Takesako, Y. Ykeda, S. Yamashita, Polyme. Bull., 23, 299 (1990).
    123. N. Minichandraiah, L. G. Scalon, R. A. March, B. Kumar, A. K. Sircar, J. Appl. Electrochem., 24, 1066 (1994).
    124. W. A. Gazotti, M. A. Spinace, E. M. Girotto, M. –A. Depaoli, Solid State Ionics 130, 281 (2000).
    125. J. P. Coleman, A. T. Lynch, P. Madhukar and J. H. Wagenknedrt, Solar Energy Mater. Solar Cells. 56, 395 (1999).
    126. J. Liu and J. P. Coleman. Mater. Sci. Eng. A. 286, 144 (2000).
    127. M. O. M. Edwards, G. Boschloo, T. Gruszecki, H. Pettersson, R. Sohlberg and A. Hagfeldt. Electrochim. Acta. 464, 2187 (2001).
    128. G. C. de Vries, Electrochim. Acta. 44, 3185 (1999).
    129. M. Wigginton, Glass in Architecture, Phaidon, London, UK, 1996.
    130. C. M. Lampert. Proc. Soc. Photo-Opt. Instrum. Eng., 3788, 2 (1999).
    131. C. M. Lampert. Proc. Soc. Photo-Opt. Instrum. Eng., 4458, 95 (2001).
    132. C. G. Granqvist. Int. Glass. Rev., 2, 67 (2001).
    133. C. G. Granqvist, Interface. 3, 18 (2001).
    134. A. Azens and C. G. Granqvist. J. Solid State Electrochem., 7, 64 (2003)
    135. A. Azens and C. G. Granqvist. Proc. Soc. Photo-Opt. Instrum. Eng,. 4458, 104 (2001).
    136. K. Bange and T. Gambke. Adv. Mater., 2, 10 (1990).
    137. (a) H. Byker, in Proc. Symposium on Electrochromic Materials II, Vol. 94-2 (Eds. K. –C. Ho. D. A. MacArthur), Electrochemical Society, Pennington, NJ 1994, pp. 3-13. (b) T. F.Guarr. Private communication. C.
    138. P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky, Electrochromism: Fun-dementias and Applications, VCH. Weinheim 1995.
    139. http://www. Nanomatgroup.com
    140. J. P. Coleman, A. T. Lynch, P. Madhukar and J. H. Wagenknecht. Solar Engery. Mater. Solar Cells. 56, 395 (1999).
    141. M. Pope, H. P. Kallmann and P.J. Magnante, J. Chem. Phys. 38, 2042, 1963.
    142. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913, 1987.
    143. R. H. Partridge, poloymer 24, 733, 1982.
    144. J. H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Mark, K. Mackay, R.N. Friend, P.L. Burn and A. B. Holmes, Nature, 347, 539, 1990.
    145. D. Braun, A.J. Heeger, Appl. Phys. Lett., 58, 1982, 1991.
    146. A. J. Heeger, D. Braun (UNIAX),WO-B 92/16023, 1992.
    147. Sze, S. M. “Physics of Semiconductors” (Springer Verlag, Heidelberg. 1985)
    148. M. L. Liu, S. J. Visco and L. C. Dejonghe, J. Electrochem. Soc., 138, 1896 (1991).
    149. M. M. Doeff, M. M. Lerner, S. J. Visco and L. C. Dejonghe, J. Electrochem. Soc., 139, 2077 (1992).
    150. M. L. Liu, S. J. Visco, L. C. Dejonghe, J. Electrochem. Sco., 138, 1891 (1991).
    151. W. A. Gazotti, R. Faez and M. A. Depaoli, J. Electroanal. Chem., 415, 107 (1996).
    152. B. P. Jelle, G. Hagen and S. Nodland, Electrochim Acta 38, 1497 (1993).
    153. N. Leventis and Y. C. Chung, J. Electrochem. Soc., 137, 3321 (1990).
    154. X. L. Wei and A. J. Epstein, Synth. Met., 74, 123 (1995).
    155. R. V. Gregory and R. Jain, Synth. Met., 74, 263 (1995).
    156. J. W. Chevalier, J. Y. Bergeron and L. H. Dao, Macromolecules 25, 3325 (1992).
    157. K. G. Neoh, M. Y. Pun, E. T. Kang and K. L. Tan, Synth. Met., 73, 209 (1995).
    158. C. R. Diaz, E. S. Matveeva and V. P. Parkhutil, J. Non-Cryst. Solids 180, 260 (1995).
    159. A. J. Epstein and A. G. MacDiarmid, Makromol. Chem. Macromol. Symp. 51, 217 (1991).
    160. G. Zotti, G. Dparano and M. Leclerc, Macromolecules 25, 2145 (1992).
    161. G. D. Storrier, S. B. Colbran and D. B. Hibbert, Synth. Met., 62, 179 (1994).
    162. M. C. Bernard and A. H. L. Goff, Surf. Interface Anal., 19, 1 (1992).
    163. B.Palys, A.Kudelski, A. Stankiewics, K.Jackowska, Synth. Met. ,108, 111(2000).
    164. J. Yue and A.J. Epestin, J. Am. Chem. Soc. ,112, 2800. (1990)
    165. L. M. Huang, T. C Wen and A. Gopalan Synth. Met. ,130, 155(2002).
    166. K. Naoi, K. Kawase and Y. Inoue, J. Electrochem. Soc., 144, L170 (1997).
    167. K. Naoi, M. Menda, H. Ooike and O. Oyama, J. Electroanal. Chem., 318, 395 (1991).
    168. N. Oyama, T. Tatsuma, T. Sato and T. Sotomura, Nature (London) 373, 598 (1995).
    169. D. M. Deleeuw, M. M. J. Simenon, A. R. Brown and R. E. F. Einerhand, Synth. Met., 87, 53 (1997).
    170. M. Josowicz and J. Janata, Anal. Chem., 58, 514 (1986).
    171. R. A. Bull, F. R. Ran and A. J. Bard, J. Electrochem. Soc., 131, 687 (1984).
    172. W .A. Gazotti, G. Casalboremiceli, S. Mitzakoff, A. Grei, M. C. Gallazzi and M. A. Depaoli, Electrochim. Acta 44, 1965 (1999).
    173. S. K. Deb, Sol. Eng. Mater., 25, 327 (1992).
    174. C. G. Granqvist, Solid State Ionics 53, 479 (1992).
    175. B. Scrosati, Laminated electrochromic displays and windows, in: B. Scrosati (Ed.), Applications of Electroactive Polymers, Chapman & Hall, London, 267 (1993).
    176. R. J. Mortimer, Electrochim Acta, 44 2971 (1999).
    177. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds. Adv.Mater., 12 481 (2000).
    178. A. A. Argun, P. H. Aubert, B. C. Thompson, I. Schwendeman, C. L. Gaupp, J. Hwang, N. J. Pinto, D. B. Tanner, A. G.. MacDiarmid, and J. R. Reynolds, Chem. Mater., 16 4401 (2004).
    179. C. L. Gaupp, and J. R. Reynolds, Macromolecules 36 6305 (2003).
    180. D. L. Meeker, D. S. K. Mudigonda, J. M. Osborn, D. C. Loveday, and J. P. Ferraris, Macromolecules, 31 2943 (1998).
    181. I. Schwendeman, R. Hickman, G. Sonmez, P. Schottland, K. Zong, D. M. Welsh, and J. R. Reynolds. Chem.Mater. 14 3118 (2002).
    182. W. A. Gazotti, M. G. Casalbore, A. Geri, A. Berlin, and M. A. Depaoli, Adv. Mater., 10 1522 (1998).
    183. O. Inganas, T. Johansson, and S. Ghosh, Electrochim.Acta. 46 2031 (2001).
    184. M. Deepa, M. Kar, and S. A. Agnihotry, Thin solid Films, 468 32 (2004).
    185. P. Bandary, M. A. Aegrter, D. Derdo, and B. Valla, J. Electrochem. Soc. 123 315 (1976).
    186. L. M. Huang, T. C. Wen, and A.Gopalan, Mater. Chem. Phys., 77 ,726 (2002).
    187. H. Ding, and S. M. Park, J. Electrochem. Soc., 150 ,E33 (2003).
    188. I. D. Park, J. Appl. Phys. 75, 1659, (1994).
    189. C. H. Chen, J. Shi and C. W. Tang, Macromol. Symp. 125 (1997) 1.
    190. S. A. VanSlyke and C. W. Tang, U. S. Patent No. 5. 061 569, 1991.
    191. C. Adachi, K. Nagai and N. Tamoto, Appl. Phys. Lett. 66 (1995) 2679.
    192. C. Giebler, H. Antoniadis, D. D. C. Bradley and Y. Shirota, J. Appl. Phys. 85 (1999) 608.
    193. S. Tokito, H. Tanaka, N. Koda, A. Okada and Y. Taga, Macromol. Symp. 125 (1997) 181.
    194. K. Okumoto and Y. Shirota, Chem. Lett. 1034 (2000).
    195. K. Okumoto and Y. Shirota, Mater. Sci. Eng. B85 (2001) 135.
    196. P. Strohriegl and J. V. Grazulevicius, Adv. Mater. 14 (2002) 1439.
    197. J. Salbeck and F. Weissortel, Macromol. Symp. 125 (1997) 121.
    198. L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik and J. R. Reynolds, Adv. Mater. 12 (2000) 481.
    199. G. Heywang and F. Jonas, Adv. Mater. 4 (1992) 116..
    200. M. Dietrich, J. Heinze, G. Heywang and F. Jonas, J. Electroanal.Chem. 369 (1994) 87.
    201. F. Jonas and G. Heywang, Electrochim. Acta. 39 (1994) 1345.
    202. F. Jonas and T. Morrison, Synth. Met. 85 (1997) 1397.
    203. Bayer AG. Eur. Patent 339 340, 1988.
    204. Bayer AG. Eur. Patent 440 957, 1991.
    205. Bayer AG. Eur. Patent 553 671, 1993.
    206. Bayer AG. Eur. Patent 686 662, 1995.
    207. Bayer AG. US Patent 5 792 558, 1996.
    208. 平面顯示器技術及未來發展趨勢

    下載圖示 校內:立即公開
    校外:2005-06-24公開
    QR CODE