簡易檢索 / 詳目顯示

研究生: 鄭采倩
Cheng, Tsai-Chien
論文名稱: 研究Eps8 參與在EGFR 調控細胞生長訊息傳遞的影響
Study of Eps8 in EGFR-mediated mitogenesis and signal transduction
指導教授: 呂增宏
Leu, Tzeng-Horng
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 85
中文關鍵詞: 細胞生長訊息傳遞
外文關鍵詞: Eps8, EGFR, signal transduction
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   Eps8(EGFR receptor pathway substrate NO.8)是EGFR以及non-receptor tyrosine kinase例如:Src 的一個共同受質,在許多細胞中具有97-kDa及68-kDa兩個isoforms。先前研究發現,大量表達EGF receptor的細胞以EGF刺激時,可以看到Eps8上tyrosine磷酸化明顯增加。同時,在EGF recptor大量表達的細胞內送入Eps8,會促進EGF所產生的mitogenesis與transformation。

      然而我們觀察到:在EGFR overexpressing cells已經伴隨有Eps8 overexpression的情形。為了瞭解Eps8的確參與在EGFR促進生長及transformation的signaling pathway,我們將表達Eps8 siRNA的DNA plasmid 送入EGFR overexpressing cells,觀察在EGF刺激下,其對於細胞的生長及致癌能力有何影響。

      首先,我們挑出表現eps8 siRNA (eps8 siRNA-12與siRNA-16)及p97eps8-specific siRNA (p97eps8 siRNA-5與p97eps8 siRNA-9)的EGFR overexpressing cells (NeoR細胞株),以及表現negative control siRNA (ctrl-3與ctrl-5)的細胞株;我們發現,不論是表現eps8 siRNA或p97eps8-specific siRNA的細胞內Eps8的表達均受到抑制,且細胞的生長上亦呈遲緩。

      更進一步地,我們以MTT cell proliferation assay和BrdU incorporation assay來觀察Eps8對EGF刺激細胞生長的影響;我們看到Eps8 knockdown的NeoR cells的細胞生長速度較control cells慢;同時EGFR所調控的total tyrosine磷酸化也受到了抑制,並影響了下游主要調控生長蛋白質包括ERK和AKT的活化。但是,Shc的蛋白質表現量和磷酸化情形卻反而增加,而且和EGFR之間的interaction也較control cells為多。

     Eps8 (EGF receptor pathway substrate NO.8) is a common substrate for both EGF receptor (EGFR) tyrosine kinase and cytoplasmic tyrosine kinase Src. It exists in two isoforms p97EPS8 and p68Eps8 in many cell lines. Early studies have indicated that ectopical overexpression of p97Eps8 in EGFR overexpressing cells not only enhances its mitogenic responsiveness to epidermal growth factor, but also elevates EGF-dependent cellular transformation.

     However, we observed that Eps8 expression is elevated in EGFR-overexpressing C3H10T1/2 fibroblast cells (NeoR). Thus, whether Eps8 really participates in EGFR-mediated mitogenesis and transformation becomes an interesting issue.

     To address this, we generated eps8 siRNA and p97eps8-specific siRNA - overexpressing cells from NeoR cells. Interestingly, the EGF-induced cell growth is abolished in both p97eps8siRNA- and eps8 siRNA-overexpressing cells. Thus, Eps8 is indeed involved in EGF-mediated mitogenesis. In addition, we examined the activity of ERK and PI3K within these EGF-stimulated cells and found that as compared with control cells, both ERK and AKT activation was down-regulated in Eps8 knockdown cells. Unexpectedly, the protein expression and Tyr317 phosphorylation of Shc was up-regulated and led to increased interaction between EGFR and Shc.

    頁數 中文摘要 1 英文摘要 4 縮寫檢索表 7 第一章緒論 10 第二章實驗材料及方法 第一節實驗材料 26 第二節實驗方法 29 第三章實驗結果 45 第四章討論 55 第五章圖表 62 參考文獻 73

    Aroian RV, Koga M, Mendel JE, Ohshima Y, and Sternberg PW.
    (1990). The let-23 gene necessary for Caenorhabditis elegans
    vulval induction encodes a tyrosine kinase of the EGF receptor
    subfamily. Nature 348, 693-699

    Barbieri MA, Roberts RL, Gumusboga A, Highfield H, Alvarez-
    Bernstein E, Causy AA, Hammond SM, and Hannon GJ. (2001).
    Role for a bidentate ribonuclease in the initiation step of RNA
    interference. Nature 409, 363-366

    Biesova Z, Piccoli C, and Wong WT. (1997). Isolation and
    characterization of e3B1, an eps8 binding protein that regulates cell
    growth. Oncogene 14, 233- 241

    Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, and Parson SJ.
    (1999). c-Src-mediated phosphorylation of the epidermal growth
    factor receptor on Tyr845 and Tyr1101 is associated with
    modulation of receptor function. J. Biol. Chem. 274, 8335–8343

    Bonfini L, Migliaccio E, Pelicci G, Lanfrancone L, and Pelicci PG.
    (1996). Not all Shc's roads lead to Ras. Trends Biochem Sci. 21,

    Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, Hoflack
    B, and Zerial M. (1992). The small GTPase rab5 functions as a
    regulatory factor in the early endocytic pathway. Cell 70, 715–728

    Buday L, and Downward J. (1993). Epidermal growth factor
    regulates p21ras through the formation of a complex of receptor,
    Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73,
    611–620

    Calderwood DA, Fujioka, and de Pereda JM, et al. (2003). Integrin
    cytoplasmic domain interactions with phosphotyrosine-binding
    domains:A structural prototype for diversity in integrin signaling.
    PNAS 100, 2272-2277

    Carpenter G, King L, Jr, and Cohen S. (1978). Epidermal growth
    factor stimulates phosphorylation in membrane preparations in vitro.
    Nature 276, 409–410

    Chardin P, Camonis JH, Gale NW, van Aelst L, Schlessinger J,
    Wigler MH, and Bar-Sagi D. (1993). Human Sos1: a guanine
    nucleotide exchange factor for Ras that binds to GRB2. Science
    260, 1338–1343

    Cooper JA, and Howell B. (1993). The when and how of Src
    regulation. Cell 73, 1051–1054

    Di Fiore PP, Scita G. (2002). Eps8 is the midst of GTPases. Int. J.
    Biochem. Cell Biol. 34, 1178-1183

    Dominguez C, Wells A, and Stahl PD. (2000). Epidermal growth
    factor and membrane trafficking. EGF receptor activation of
    endocytosis requires Rab5a. J. Cell Biol. 151, 539–550

    Emlet DR, Moscatello DK, Ludlow LB, and Wong AJ. (1997).
    Subsets of epidermal growth factor receptors during activation and
    endocytosis. J. Biol. Chem. 272, 4079–4086

    Ettenberg SA, Keane MM, Nau MM, Frankel M, Wang LM, Pierce
    JH, and Lipkowitz S. (1999). cbl-b inhibits epidermal growth factor
    receptor signaling. Oncogene 18, 1855–1866

    Fazioli F, Minichiello L, Matoska V, Castagnino P, Miki T, Wong WT,
    and Di Fiore PP. (1993). Eps8, a substrate for the epidermal growth
    factor receptor kinase, enhances EGF-dependent mitogenic
    signals. EMBO J. 12, 3799-3808

    Fazioli F, Minichiello L, Matoska V, Castagnino P, Miki T, Wong WT,
    and Di Fiore PP. (1993). Eps8, a substrate for the epidermal growth
    factor receptor kinase, enhances EGF-dependent mitogenic
    signals. EMBO J. 12, 3799-3808

    Ferguson KM, Lemmon MA, Schlessinger J, and Sigler PB. (1995).
    Structure of the high affinity complex of inositol triphosphate with a
    phospholipase C pleckstrin homology domain. Cell 83, 1037-1046

    Gallo R, Provenzano C, Carbone R, Di Fiore PP, Castellani L,
    Falcone G, and Alema S. (1997). Regulation of the tyrosine kinase
    substrate Eps8 expression by growth factors, v-Src and terminal
    differentiation. Oncogene 15, 1929-1936

    Gruenberg J, and Maxfield FR. (1995). Membrane transport in the
    endocytic pathway. Curr. Opin. Cell Biol. 7, 552–563

    Hammond SM, Boettcher S, Caudy AA, Kobayashi R, and Hannon
    GJ. (2001). Argonaute 2, a link between genetic and biobhemical
    analyses of RNAi. Science 293, 1146-1150

    Hubbard SR, Wei L, Ellis L, and Hendrickson WA. (1994). Crystal
    structure of the tyrosine kinase domain of the human insulin
    receptor. Nature 372, 746–754

    Innocenti M, Frittoli E, Ponzanelli I, Falck JR, Bracmann SM, Di
    Fiore P P, and Scita G. (2003). Phosphoinositide 3-kinase activates
    Rac by entering in a complex with Eps8, Abi1, and Sos-1. J. Cell
    Biol. 160, 17-23

    Innocenti M, Tenca P, Frittoli E, Faretta M, Tocchetti A, Di Fiore PP,
    and Scita G. (2003). Mechanisms through which Sos-1 coordinates
    the activation of Ras and Rac. J. Cell Biol. 156, 125-136

    Ion A, Crosby AH, Kremer H, Kenmochi N, Van Reen M, Fenske C,
    Van Der Burgt I, Brunner HG, Montgomery K, Kucherlapati RS,
    Patton MA, Page C, Mariman E, and Jeffery S. (2000). Detailed
    mapping, mutation analysis, and intragenic polymorphism
    identification in candidate Noonan syndrome genes MYL2, DCN,
    Eps8, and RPL6. J. Med. Genet. 37, 884–886

    Lax I, Bellot F, Howk R, Ullrich A, Givol D, and Schlessinger J.
    (1989). Functional analysis of the ligand binding site of EGF-
    receptor utilizing chimeric chicken/human receptor molecules.
    EMBO J. 8, 421–427

    Karlsson T, Songyang Z, Landgren E, Lavergne C, Di Fiore PP,
    Anafi M, Pawson T, Cantley LC, Claesson-Welsh L, and Welsh M.
    (1995). Molecular interactions of the Src homology 2 domain
    protein Shb with phosphotyrosine residues, tyrosine kinase
    receptors and Src homology 3 domain proteins. Oncogene, 10,
    1475-1483

    Kishan KV, Scita G., Wong WT, Di Fiore PP, and Newcomer ME.
    (1997). The SH3 domain of Eps8 exists as a novel intertwined
    dimmer. Nat Struct Biol. 4, 739-43

    Lanzetti L, Rybin V, Malabarba MG, Christoforidis S, Scita G, Zerial
    M, and Di Fiore PP. (2000). The Eps8 protein coordinates EGF
    receptor signalling through Rac and trafficking through Rab5.
    Nature 408, 374–377

    Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY,
    Alroy I, Lavi S, Iwai K, Reiss Y, Ciechanover A, Lipkowitz S, and
    Yarden Y. (1999). Ubiquitin ligase activity and tyrosine
    phosphorylation underlie suppression of growth factor signaling by
    c-Cbl/Sli-1. Mol. Cell 4, 1029–1040

    Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon WY,
    Beguinot L, Geiger B, and Yarden Y. (1998). c-Cbl/Sli-1 regulates
    endocytic sorting and ubiquitination of the epidermal growth factor
    receptor. Genes Dev. 12, 3663-3674

    Maa M-C, Hsieh C-Y, and Leu T-H. (2001). Overexpression of
    p97Eps8 leads to cellular transformation: implication of pleckstrin
    homology domain in p97Eps8-mediated ERK activation. Oncogene
    19, 106-112

    Maa M-C, Lai J-R, Lin R-W, and Leu T-H. (1999). Enhancement of
    tyrosyl phosphorylation and protein expression of eps8 by v-Src.
    Biochim. Biophys. Acta. 1450, 341-351

    Marsh M, and McMahon HT. (1999). The structural era of
    endocytosis. Science 285, 215–220

    Marshall CJ. (1995). Specificity of receptor tyrosine kinase
    signaling: transient versus sustained extracellular signal-regulated
    kinase activation. Cell 80,179-185

    Matoskova B, Wong WT, Nomura N, Robbins KC, and Di Fiore PP.
    (1996). RN-tre specifically binds to the SH3 domain of eps8 with
    high affinity and confers growth advantage to NIH3T3 upon
    carboxy-terminal truncation. Oncogene 12, 2679–2688

    Matoskova B, Wong WT, Salcini AE, Pelicci PG, and Di Fiore PP.
    (1995). Constitutive phosphorylation of eps8 in tumor cell lines:
    relevance to malignant transformation. Mol Cell Biol. 15, 3805-3812

    Matoskova B, Wong WT, Seki N, Nagase T, Nomura N, Robbins KC,
    and Di Fiore PP. (1996). RN-tre identifies a family of tre-related
    proteins displaying a novel potential protein binding domain.
    Oncogene 12, 2563-2571

    McManus MT, and Sharp PA. (2002). Gene silencing in mammals
    by small interfering RNAs. Nat. Rev. Genet. 3, 737-747

    Mongiovi AM, Romano PR, Panni S, Mendoza M, Wong WT,
    Musacchio A, Cesareni G, and Di Fiore PP. (1999). A novel
    peptide- SH3 interaction. EMBO J. 18, 5300– 5309

    Mosmann T. (1983) Rapid colorimetric assay for cellular growth
    and survival: application to proliferation and cytotoxicity assays. J
    Immunol Methods. 65, 55-63

    Olivier JP, Raabe T, Henkemeyer M, Dickson B, Mbamalu G,
    Margolis B, Schlessinger J, Hafen E, and Pawson T. (1993). A
    Drosophila SH2-SH3 adaptor protein implicated in coupling the
    sevenless tyrosine kinase to an activator of Ras guanine nucleotide
    exchange, Sos. Cell 73, 179–191

    Owen DJ, and Luzio JP. (2000). Structural insights into clathrin-
    mediated endocytosis. Curr. Opin. Cell Biol. 12, 467–474

    Pitcher JA, Touchara K, Payne ES, and Lefkowitz RJ. (1995).
    Pleckstrin homology domain-mediated membrane association and
    activation of the ß-adrenergic receptor kinase requires coordinate
    interaction with Gß? subunits and lipid. J. Biol. Chem. 270,
    11707-11710

    Provenzano C, Gallo R, Carbone R, Di Fiore PP, Falcone G,
    Castellani L, and Alema S. (1998). Eps8, a tyrosine kinase
    substrate, is recruited to the cell cortex and dynamic F-actin upon
    cytoskeleton remodeling. Exp Cell Res. 242, 186-200

    Rozakis-Adcock M, Fernley R, Wade J, Pawson T, and Bowtell D.
    (1993). The SH2 and SH3 domains of mammalian Grb2 couple the
    EGF receptor to the Ras activator mSos1. Nature 363, 83–85

    Rozakis-Adcock M, McGlade J, Mbamalu G, Pelicci G, Daly R, Li W,
    Batzer A, Thomas S, Brugge J, and Pelicci PG. (1992). Association
    of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in
    activation of the Ras pathway by tyrosine kinases. Nature 360,
    689-692

    Salcini AE, McGlade J, Pelicci G, Nicoletti I, Pawson T, and Pelicci
    PG. (1994). Formation of Shc-Grb2 complexes is necessary to
    induce neoplastic transformation by overexpression of Shc proteins.
    Oncogene 9, 2827-2836

    Schlessinger J. (2002). Ligand-induced, receptor-mediated
    dimerization and activation of EGF receptor. Cell 110, 669–72

    Scita G, Nordstrom J, Carbone R, Tenca P, Giardina G, Gutkind S,
    Bjarnegard M, Betsholtz C, and Di Fiore PP. (1999). Eps8 and
    E3B1 transduce signals from Ras to Rac. Nature 401, 290-293

    Scita G, Tenca P, Areces LB, Tocchetti A, Frittoli E, Giardina G,
    Ponzanelli I, Sini P, Innocenti M, and Di Fiore PP. (2001). An
    effector region in Eps8 is responsible for the activation of the

    Rac-specific GEF activity of Sos-1 and for the proper localization of
    the Rac-based actin-polymerizing machine. J. Cell Biol. 154,
    1031-1044

    Sibilia M, and Wagner EF. (1995). Strain-dependent epithelial
    defects in mice lacking the EGF receptor. Science 269, 234-238
    Sordella R, Bell DW, Haber DA, and Settleman J. (2004).
    Gefitinib-sensitizing EGFR mutations in lung cancer activate
    anti-apoptotic pathways. Science 305, 1163-1167

    Sorkin A, and Waters CM. (1993). Endocytosis of growth factor
    receptors. Bioessays 15, 375-382

    Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U,
    Yee D, LaMantia C, Mourton T, Herrup K, and Harris RC. (1995).
    Targeted disruption of mouse EGF receptor: effect of genetic
    background on mutant phenotype. Science 269, 230-234

    Tocchetti A, Confalonieri S, Scita G, Di Fiore PP, and Betsholtz C.
    (2003). In silico analysis of the EPS8 gene family: genomic
    organization, expression profile, and protein structure. Genomics
    81, 234–244

    Touhara K, Inglese J, Picher JA, Shaw G, and Lefkowitz RJ. (1994).
    Binding of G protein beta gamma-subunits to pleckstrin homology
    domains. J. Biol. Chem. 269, 10217-10220

    van de Loosdrecht AA, Beelen RH, Ossenkoppele GJ, Broekhoven
    MG, and Langenhuijsen MM. (1994). A tetrazolium-based
    colorimetric MTT assay to quantitate human monocyte mediated
    cytotoxicity against leukemic cells from cell lines and patients with
    acute myeloid leukemia. J. Immunol. Methods 174, 311-320

    van der Geer P, Hunter T, and Lindberg RA. (1994). Receptor
    protein-tyrosine kinases and their signal transduction pathways.
    Annu. Rev. Cell Biol. 10, 251-337

    Whitmarsh AJ, and Davis RJ. (1998). Structural organization of
    MAP-kinase signaling modules by scaffold proteins in yeast and
    mammals. Trends Biochem. Sci. 23, 481–485

    Wiley HS, Herbst J, Walsh BJ, Lauffenburger DA, Rosenfeld MG,
    and Gill GN. (1991). Role of tyrosine kinase activity in endocytosis,
    compartmentation and downregulation of the EGF receptor. J. Biol.
    Chem. 266, 11083-11094

    Wong WT, Carlomagno F, Druck T, Barletta C, Croce CM, Huebner
    K, Kraus MH, and Di Fiore PP. (1994). Evolutionary conservation of
    the eps8 gene and its mapping to human chromosome 12q23-q24.
    Oncogene, 9, 3057-3061

    Yarden Y, and Sliwkowski MX. (2001). Untangling the ErbB
    signalling network. Nat. Rev. Mol. Cell. Biol. 2, 127–137

    Zamore PD, Tuschl T, Sharp PA, and Bartel DP. (2000). RNAi:
    Double-stranded RNA directs the ATP-dependent cleavage of
    mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33

    Zerial M, and McBride H. (2001). Rab proteins as membrane
    organizers. Nat Rev Mol Cell Biol. 2, 107-117

    Zwick E, Hackel PO, Prenzel N, and Ullrich A. (1999). The EGF
    receptor as central transducer of heterologous signalling systems.
    Trends Pharmacol. Sci. 20, 408–412

    下載圖示 校內:2010-08-16公開
    校外:2010-08-16公開
    QR CODE