| 研究生: |
洪于傑 Hong, Yu-Jie |
|---|---|
| 論文名稱: |
DNA 轉位酶在複製壓力下的功能 Functional study of DNA translocases during replication stress |
| 指導教授: |
廖泓鈞
Liaw, Hung-Jiun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 複製叉反轉 、反向複製叉 、複製壓力 |
| 外文關鍵詞: | ZRANB3, SMARCAL1, HLTF, fork reversal, replication stress, DNA fiber |
| 相關次數: | 點閱:187 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
ZRANB3、SMARCAL1與HLTF皆屬於在複製壓力時會促進複製叉反轉的轉位酶,反向複製叉結構不僅可以在有複製壓力時保護停滯的複製叉避免其崩毀,也會使複製速度變慢。然而,在有DNA損傷時,這些轉位酶是單獨運作還是共同運作仍是不明瞭的,故而在本次實驗中,我們嘗試將兩種轉位酶剔除,產生HLTF SMARCAL1及HLTF ZRANB3的雙重剔除的細胞株,並測試DNA損傷試劑cisplatin、methyl methanesulfonate (MMS) 和4-Nitroquinoline 1-oxide (4NQO) 對細胞存活能力的影響。除此之外,我們也測試了以MMS誘導複製壓力時對複製進程的影響,我們發現,與HLTF單獨剔除的細胞相比,同時將HLTF與SMARCAL1剔除的細胞,不管在有或無MMS處理的情況下,其複製進程皆會有明顯的減弱。然而,這樣的結果仍續以更多實驗去驗證。
ZRANB3, SMARCAL1 and HLTF are translocases that promote fork reversal during replication stress. The reversed fork structure not only protect stalled forks from collapse, but also contribute to replication slowing during replication stress. However, it still not clear whether these translocases act alone or work together to respond various types of DNA lesions. In this study, we tried to deplete two translocases by generating HLTF SMARCAL1 and HLTF ZRANB3 double gene-depleted cells. We determined cell survival in respond to various DNA damaging agents including cisplatin, methyl methanesulfonate (MMS), and 4-Nitroquinoline 1-oxide (4NQO). Additionally, we determined progression of replication in response to MMS-induced replication stress. We found that the depletion of HLTF and SMARCAL1 simultaneously further reduced progression of replication both in the absence and presence of MMS, when compared to HLTF-depleted cells. However, more studies will be needed to verify this result.
1. Gao, Y., Mutter-Rottmayer, E., Zlatanou, A., Vaziri, C., and Yang, Y. (2017) Mechanisms of Post-Replication DNA Repair. Genes (Basel) 8
2. Mota, M. B. S., Carvalho, M. A., Monteiro, A. N. A., and Mesquita, R. D. (2019) DNA damage response and repair in perspective: Aedes aegypti, Drosophila melanogaster and Homo sapiens. Parasit Vectors 12, 533
3. Rocha, C. R. R., Silva, M. M., Quinet, A., Cabral-Neto, J. B., and Menck, C. F. M. (2018) DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics (Sao Paulo) 73, e478s
4. De' Angelis, G. L., Bottarelli, L., Azzoni, C., De' Angelis, N., Leandro, G., Di Mario, F., Gaiani, F., and Negri, F. (2018) Microsatellite instability in colorectal cancer. Acta Biomed 89, 97-101
5. Lundin, C., North, M., Erixon, K., Walters, K., Jenssen, D., Goldman, A. S. H., and Helleday, T. (2005) Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. Nucleic Acids Research 33, 3799-3811
6. Giglia-Mari, G., Zotter, A., and Vermeulen, W. (2011) DNA damage response. Cold Spring Harb Perspect Biol 3, a000745
7. Zhang, L., and Gong, F. (2016) The emerging role of deubiquitination in nucleotide excision repair. DNA Repair (Amst) 44, 118-122
8. Brandsma, I., and Gent, D. C. (2012) Pathway choice in DNA double strand break repair: observations of a balancing act. Genome Integr 3, 9
9. Jackson, S. P., and Bartek, J. (2009) The DNA-damage response in human biology and disease. Nature 461, 1071-1078
10. Chang, H. H. Y., Pannunzio, N. R., Adachi, N., and Lieber, M. R. (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18, 495-506
11. Kolinjivadi, A. M., Sannino, V., de Antoni, A., Techer, H., Baldi, G., and Costanzo, V. (2017) Moonlighting at replication forks - a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51. FEBS Lett 591, 1083-1100
12. Her, J., and Bunting, S. F. (2018) How cells ensure correct repair of DNA double-strand breaks. J Biol Chem 293, 10502-10511
13. Bhat, K. P., and Cortez, D. (2018) RPA and RAD51: fork reversal, fork protection, and genome stability. Nat Struct Mol Biol 25, 446-453
14. Branzei, D., and Foiani, M. (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9, 297-308
15. Polo, S. E., and Jackson, S. P. (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25, 409-433
16. Branzei, D., and Foiani, M. (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Bio 11, 208-219
17. Petermann, E., and Helleday, T. (2010) Pathways of mammalian replication fork restart. Nat Rev Mol Cell Bio 11, 683-687
18. Heller, R. C., and Marians, K. J. (2006) Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Bio 7, 932-943
19. Ulrich, H. D. (2005) The RAD6 pathway: Control of DNA damage bypass and mutagenesis by ubiquitin and SUMO. Chembiochem 6, 1735-1743
20. Stelter, P., and Ulrich, H. D. (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188-191
21. Kannouche, P., Broughton, B. C., Volker, M., Hanaoka, F., Mullenders, L. H. F., and Lehmann, A. R. (2001) Domain structure, localization, and function of DNA polymerase eta, defective in xeroderma pigmentosum variant cells. Gene Dev 15, 158-172
22. Kannouche, P., de Henestrosa, A. R. F., Coull, B., Vidal, A. E., Gray, C., Zicha, D., Woodgate, R., and Lehmann, A. R. (2002) Localization of DNA polymerases eta and iota to the replication machinery is tightly co-ordinated in human cells. Embo Journal 21, 6246-6256
23. Kannouche, P. L., Wing, J., and Lehmann, A. R. (2004) Interaction of human DNA polymerase eta with monoubiquitinated PCNA: A possible mechanism for the polymerase switch in response to DNA damage. Molecular Cell 14, 491-500
24. Motegi, A., Liaw, H. J., Lee, K. Y., Roest, H. P., Maas, A., Wu, X., Moinova, H., Markowitz, S. D., Ding, H., Hoeijmakers, J. H. J., and Myung, K. (2008) Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. P Natl Acad Sci USA 105, 12411-12416
25. Motegi, A., Sood, R., Moinova, H., Markowitz, S. D., Liu, P. P., and Myung, K. (2006) Human SHPRH suppresses genomic instability through proliferating cell nuclear antigen polyubiquitination. Journal of Cell Biology 175, 703-708
26. Unk, I., Hajdu, I., Blastyak, A., and Haracska, L. (2010) Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance. DNA Repair 9, 257-267
27. Unk, I., Hajdu, I., Fatyol, K., Hurwitz, J., Yoon, J. H., Prakash, L., Prakash, S., and Haracska, L. (2008) Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. P Natl Acad Sci USA 105, 3768-3773
28. Unk, I., Hajdu, I., Fatyol, K., Szakal, B., Blastyak, A., Bermudez, V., Hurwitz, J., Prakash, L., Prakash, S., and Haracska, L. (2006) Human SHPRH is a ubiquitin ligase for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. P Natl Acad Sci USA 103, 18107-18112
29. Blastyak, A., Hajdu, I., Unk, I., and Haracska, L. (2010) Role of Double-Stranded DNA Translocase Activity of Human HLTF in Replication of Damaged DNA. Molecular and Cellular Biology 30, 684-693
30. Burkovics, P., Sebesta, M., Balogh, D., Haracska, L., and Krejci, L. (2014) Strand invasion by HLTF as a mechanism for template switch in fork rescue. Nucleic Acids Research 42, 1711-1720
31. Achar, Y. J., Balogh, D., and Haracska, L. (2011) Coordinated protein and DNA remodeling by human HLTF on stalled replication fork. P Natl Acad Sci USA 108, 14073-14078
32. Achar, Y. J., Balogh, D., Neculai, D., Juhasz, S., Morocz, M., Gali, H., Dhe-Paganon, S., Venclovas, C., and Haracska, L. (2015) Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling. Nucleic Acids Research 43, 10277-10291
33. Kile, A. C., Chavez, D. A., Bacal, J., Eldirany, S., Korzhnev, D. M., Bezsonova, I., Eichman, B. F., and Cimprich, K. A. (2015) HLTF's Ancient HIRAN Domain Binds 3 ' DNA Ends to Drive Replication Fork Reversal. Molecular Cell 58, 1090-1100
34. Ciccia, A., Nimonkar, A. V., Hu, Y. D., Hajdu, I., Achar, Y. J., Izhar, L., Petit, S. A., Adamson, B., Yoon, J. C., Kowalczykowski, S. C., Livingston, D. M., Haracska, L., and Elledge, S. J. (2012) Polyubiquitinated PCNA Recruits the ZRANB3 Translocase to Maintain Genomic Integrity after Replication Stress. Molecular Cell 47, 396-409
35. Betous, R., Mason, A. C., Rambo, R. P., Bansbach, C. E., Badu-Nkansah, A., Sirbu, B. M., Eichman, B. F., and Cortez, D. (2012) SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Gene Dev 26, 151-162
36. Betous, R., Couch, F. B., Mason, A. C., Eichman, B. F., Manosas, M., and Cortez, D. (2013) Substrate-Selective Repair and Restart of Replication Forks by DNA Translocases. Cell Rep 3, 1958-1969
37. Vujanovic, M., Krietsch, J., Raso, M. C., Terraneo, N., Zellweger, R., Schmid, J. A., Taglialatela, A., Huang, J. W., Holland, C. L., Zwicky, K., Herrador, R., Jacobs, H., Cortez, D., Ciccia, A., Penengo, L., and Lopes, M. (2017) Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity. Molecular Cell 67, 882-+
38. Kolinjivadi, A. M., Sannino, V., De Antoni, A., Zadorozhny, K., Kilkenny, M., Techer, H., Baldi, G., Shen, R., Ciccia, A., Pellegrini, L., Krejci, L., and Costanzo, V. (2017) Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments. Molecular Cell 67, 867-+
39. Zellweger, R., Dalcher, D., Mutreja, K., Berti, M., Schmid, J. A., Herrador, R., Vindigni, A., and Lopes, M. (2015) Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. Journal of Cell Biology 208, 563-579
40. Weston, R., Peeters, H., and Ahel, D. (2012) ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response. Gene Dev 26, 1558-1572
41. Yuan, J. S., Ghosal, G., and Chen, J. J. (2012) The HARP-like Domain-Containing Protein AH2/ZRANB3 Binds to PCNA and Participates in Cellular Response to Replication Stress. Molecular Cell 47, 410-421
42. Neubert, G., von Au, K., Drossel, K., Tzschach, A., Horn, D., Nickel, R., and Kaindl, A. M. (2013) Angelman syndrome and severe infections in a patient with de novo 15q11.2-q13.1 deletion and maternally inherited 2q21.3 microdeletion. Gene 512, 453-455
43. Yusufzai, T., and Kadonaga, J. T. (2008) HARP Is an ATP-Driven Annealing Helicase. Science 322, 748-750
44. Cortez, D. (2015) Preventing replication fork collapse to maintain genome integrity. DNA Repair 32, 149-157
45. Carroll, C., Badu-Nkansah, A., Hunley, T., Baradaran-Heravi, A., Cortez, D., and Frangoul, H. (2013) Schimke immunoosseous dysplasia associated with undifferentiated carcinoma and a novel SMARCAL1 mutation in a child. Pediatr Blood Cancer 60, E88-E90
46. Lee, K. Y., and Myung, K. J. (2008) PCNA modifications for regulation of post-replication repair pathways. Mol Cells 26, 5-11