| 研究生: |
江韋廷 Jiang, Wei-Ting |
|---|---|
| 論文名稱: |
氧化鋅奈米線/片狀複合結構之製備及其應用於染料敏化太陽能電池之研究 Construction of Hierarchical ZnO Nanowire/Nanosheet Structure for Use in Dye-sensitized Solar Cells |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 氧化鋅 、化學浴沉積法 、染料敏化太陽能電池 |
| 外文關鍵詞: | ZnO, chemical bath deposition, dye-sensitized solar cells |
| 相關次數: | 點閱:89 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以全溶液法成長氧化鋅奈米線/片狀複合結構,首先利用化學浴沉積法(chemical bath deposition,CBD),於ITO玻璃基板上成長氧化鋅奈米線陣列,再利用室溫化學浴法,於已成長之奈米線陣列外成長片狀結構,形成一同時具有良好電子傳輸特性與高表面積之複合薄膜。根據高解析穿透式電子顯微鏡之分析,顯示此複合結構之奈米線主幹與片狀結構皆為單晶結構。以此複合結構為染料敏化電池之光陽極,可大幅提升奈米線陣列之光電轉換效率,於膜厚約9微米時可達5.14%,且經由光強度調制光電流分析儀(intensity modulated photocurrent spectroscopy,IMPS)分析顯示經室溫化學浴後的產物,相對於奈米線陣列具有良好之電子傳輸性質。本研究亦針對此製程之進行改良,使全製程溫度低於120 oC以應用於可撓式元件。此全低溫製程應用於以ITO玻璃基板,當膜厚約3微米時,元件光電轉換效率可達3.07%,而目前尚未針對製程進行最佳化,因此以ITO-PET為基板轉換效率僅接近1%。
Zinc oxide nanowire/nanosheet hierarchical structure have been successfully synthesized by a wet-chemical route. At first, ZnO nanowire array is synthesized by chemical bath deposition (CBD) on ITO glass substrates. Then, an outer shell composed of many nanosheets structure is grown by another room-temperature CBD on the as-prepared nanowire surface, which becomes a high surface area composite with an excellent electron transport characteristic. High-resolution transmition electron microscopy (HR-TEM) characterizations reveal that the nanowire and nanosheet both are single crystalline with some specific relations between each other. Compared to bare nanowire array, a remarkable increase of the photon to electron efficiency is achieved by using this hierarchical ZnO structure as the photoanode of the dye-sensitized solar cell (DSSC). Using the hierarchical ZnO structure as the photoanode, the DSSC attains a photon to electron efficiency of 5.14% with a composite film thickness of 9 μm. The results of the intensity modulated photocurrent spectroscopy (IMPS) reveal that the hierarchical structures grown by room-temperature CBD possess an excellent electron transport property compared to the as-prepared nanowire. Finally, a wet-chemical route with temperatures below 120 oC is further developed in this study for flexible DSSCs. A photon to electron efficiency of 3.07% is attained by using the low-temperature grown ZnO nanostructure with 3-μm film thickness on ITO glass. So far, the efficiency was below 1% on ITO-PET because of the lack of process optimization.
1 Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 39). Progress in Photovoltaics: Research and Applications 20, 12-20, doi:10.1002/pip.2163 (2012).
2 Oregan, B. & Gratzel, M. A Low-cost, High-efficiency Solar-cell Based on Dye-sensitized Colloidal TiO2 Films. Nature 353, 737-740, doi:10.1038/353737a0 (1991).
3 Zhang, Q. F., Dandeneau, C. S., Zhou, X. Y. & Cao, G. Z. ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials 21, 4087-4108, doi:10.1002/adma.200803827 (2009).
4 Hadis Morkoç, Ü. Ö. in Zinc Oxide: Fundamentals, Materials and Device Technology. (2009).
5 Law, M., Greene, L. E., Johnson, J. C., Saykally, R. & Yang, P. Nanowire dye-sensitized solar cells. Nature Materials 4, 455-459, doi:10.1038/nmat1387 (2005).
6 Kakiuchi, K., Saito, M. & Fujihara, S. Fabrication of ZnO films consisting of densely accumulated mesoporous nanosheets and their dye-sensitized solar cell performance. Thin Solid Films 516, 2026-2030, doi:10.1016/j.tsf.2007.07.136 (2008).
7 Martinson, A. B. F. et al. Electron Transport in Dye-Sensitized Solar Cells Based on ZnO Nanotubes: Evidence for Highly Efficient Charge Collection and Exceptionally Rapid Dynamics. J. Phys. Chem. A 113, 4015-4021, doi:10.1021/jp810406q (2009).
8 Jiang, C. Y., Sun, X. W., Lo, G. Q., Kwong, D. L. & Wang, J. X. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Applied Physics Letters 90, 263501, doi:10.1063/1.2751588 (2007).
9 Yoshida, T. et al. Electrodeposition of Inorganic/Organic Hybrid Thin Films. Advanced Functional Materials 19, 17-43, doi:10.1002/adfm.200700188 (2009).
10 Greene, L. E. et al. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew Chem Int Ed Engl 42, 3031-3034, doi:10.1002/anie.200351461 (2003).
11 Pacholski, C., Kornowski, A. & Weller, H. Self-assembly of ZnO: from nanodots to nanorods. Angew Chem Int Ed Engl 41, 1188-1191 (2002).
12 Gao, X. P. et al. Rotor-like ZnO by epitaxial growth under hydrothermal conditions. Chem Commun, 1428-1429, doi:10.1039/b403252g (2004).
13 Zhang, D. F., Sun, L. D., Zhang, J., Yan, Z. G. & Yan, C. H. Hierarchical construction of ZnO architectures promoted by heterogeneous nucleation. Cryst Growth Des 8, 3609-3615, doi:Doi 10.1021/Cg800143x (2008).
14 Gratzel, M. Photoelectrochemical cells. Nature 414, 338-344, doi:10.1038/35104607 (2001).
15 Listorti, A., O’Regan, B. & Durrant, J. R. Electron Transfer Dynamics in Dye-Sensitized Solar Cells. Chem. Mater. 23, 3381-3399, doi:10.1021/cm200651e (2011).
16 Durrant, M. G. a. J. R. in Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion Series on Photoconversion of Solar Energy (ed Arthur J Nozik Mary D. Archer) Ch. 8, 503-530 (Imperial College Press, 2008).
17 Gratzel, M. & Yeh, C. Y. & Diau, E. W. G. et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334, 629-634, doi:10.1126/science.1209688 (2011).
18 Saito, M. & Fujihara, S. Large photocurrent generation in dye-sensitized ZnO solar cells. Energy & Environmental Science 1, 280, doi:10.1039/b806096g (2008).
19 Vomiero, A. et al. Hierarchically Assembled ZnO Nanocrystallites for High-Efficiency Dye-Sensitized Solar Cells. Angew. Chem. Int. Edit. 50, 12321-12325, doi:10.1002/anie.201104605 (2011).
20 Nazeeruddin, M. K. et al. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society 127, 16835-16847, doi:10.1021/ja052467l (2005).
21 Ho, K. C. et al. Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode. Energy Environ. Sci. 4, 3448-3455, doi:10.1039/c0ee00587h (2011).
22 Wu, C. T. & Wu, J. J. Room-temperature synthesis of hierarchical nanostructures on ZnO nanowire anodes for dye-sensitized solar cells. J. Mater. Chem. 21, 13605-13610, doi:10.1039/c1jm11681a (2011).
23 Ito, S. et al. High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem. Commun., 4004-4006, doi:10.1039/b608279c (2006).
24 Arakawa, H. et al. Efficient dye-sensitized solar cell sub-modules. Current Applied Physics 10, S157-S160, doi:10.1016/j.cap.2009.11.004 (2010).
25 Lin, L. Y. et al. Enhanced performance of a flexible dye-sensitized solar cell with a composite semiconductor film of ZnO nanorods and ZnO nanoparticles. Electrochimica Acta 62, 341-347, doi:10.1016/j.electacta.2011.12.036 (2012).
26 Kim, J. J., Kim, K. S. & Jung, G. Y. Fabrication of flexible dye-sensitised solar cells with photoanodes composed of periodically aligned single crystalline vertical ZnO NRs by utilising a direct metal transfer method. J. Mater. Chem. 21, 7730-7735, doi:10.1039/c0jm04419a (2011).
27 Allen J. Bard, L. R. F. in Electrochemical Methods: Fundamentals and Applications Ch. 10, 856 (John Wiley & Sons 2001).
28 Bisquert, J. Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B 106, 325-333, doi:10.1021/jp011941g (2002).
29 Fabregat-Santiago, F., Bisquert, J., Garcia-Belmonte, G., Boschloo, G. & Hagfeldt, A. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Solar Energy Materials and Solar Cells 87, 117-131, doi:10.1016/j.solmat.2004.07.017 (2005).
30 Adachi, M., Sakamoto, M., Jiu, J. T., Ogata, Y. & Isoda, S. Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem. B 110, 13872-13880, doi:10.1021/jp061693u (2006).
31 Ku, C. H. & Wu, J. J. Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells. Appl. Phys. Lett.91, 093117-1-093117-3, doi:10.1063/1.2778454 (2007).
32 Oekermann, T., Yoshida, T., Minoura, H., Wijayantha, K. G. U. & Peter, L. M. Electron transport and back reaction in electrochemically self-assembled nanoporous ZnO/dye hybrid films. J. Phys. Chem. B 108, 8364-8370, doi:10.1021/jp037831m (2004).
33 Franco, G., Peter, L. M. & Ponomarev, E. A. Detection of inhomogeneous dye distribution in dye sensitised nanocrystalline solar cells by intensity modulated photocurrent spectroscopy (IMPS). Electrochemistry Communications 1, 61-64, doi:10.1016/s1388-2481(99)00005-3 (1999).
34 Sakuragi, Y., Wang, X.-F., Miura, H., Matsui, M. & Yoshida, T. Aggregation of indoline dyes as sensitizers for ZnO solar cells. Journal of Photochemistry and Photobiology A: Chemistry 216, 1-7, doi:10.1016/j.jphotochem.2010.08.015 (2010).
35 Cho, S., Jang, J.-W., Lee, J. S. & Lee, K.-H. Exposed Crystal Face Controlled Synthesis of 3D ZnO Superstructures. Langmuir 26, 14255-14262, doi:10.1021/la102126m (2010).
36 Xu, X. et al. Preparation of multi-interfacial ZnO particles and their growth mechanism. Advanced Powder Technology 22, 634-638, doi:10.1016/j.apt.2010.09.017 (2011).
37 Williams, D. B., C.Barry Carter. Transmission Electron Microscopy. 258 (Plenum Press, New York, 1996).
38 G.R. Bird, E. S. E., M.A. Conlin, A.E. Rosenoff, K.S. Norland, H. Rodriguez, D. Chin. The geometrical structure and absorption spectrum of a cyanine dye aggregate. J. Phys. Chem 71, 2396–2403, doi:10.1021/j100867a003 (1967).
39 Ito, S. et al. High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Advanced Materials 18, 1202-1205, doi:10.1002/adma.200502540 (2006).
校內:2017-08-09公開