研究生: |
張維剛 Chang, Wei-Kang |
---|---|
論文名稱: |
二氧化鈦奈米管陣列氣體感測器之研究 Study of TiO2 Nanotube Arrays Based Gas Sensors |
指導教授: |
陳慧英
Chen, Huey-Ing |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 二氧化鈦 、奈米管 、陽極氧化 、氣體感測 、氫 、氨 、二氧化氮 |
外文關鍵詞: | titanium dioxide, nanotube, anodization, gas sensing, hydrogen, ammonia, nitrogen dioxide |
相關次數: | 點閱:74 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用陽極氧化法製備二氧化鈦奈米管元件以作為電阻式氣體感測器。首先,將鈦金屬濺鍍於石英玻璃上,再在NH4F-H2O-EG電解液中進行陽極氧化以獲得二氧化鈦奈米管陣列(TiO2 NTA),然後沉積金屬電極以製成TiO2 NTA/quartz元件,並進行氫(H2)、氨氣(NH3)和二氧化氮(NO2)感測實驗。研究中旨在探討金屬電極對氣體感測特性之影響,並由氣體感測結果推導其感測機制。
實驗結果顯示,鉑、金和鈀三種金屬電極元件對氫氣之感測能力遠較氨、二氧化氮為佳。比較此三種元件發現,對於氫氣之感測靈敏度依序為鉑、鈀、金電極元件。由此可知,鉑及鈀對氫之溢流效應可提升元件之感測能力。在373K下,鉑電極元件之靈敏度可達到2.85×104 (1% H2/N2);即使在100 ppb H2/N2之低濃度下,靈敏度仍可達到1個數量級。由暫態結果得知,隨著溫度及濃度之增加,其響應速率也隨之增加,在473K、1%H2/N2下,響應時間僅需15秒。
當氫氣感測實驗於空氣氣氛下進行時,由於氫氣與表面吸附之O2作用使TiO2奈米管表面之氧離子被移除,而空氣中之氧氣會回填至TiO2表面氧空缺,又形成O2。因此,響應之電流值可迅速達到穩態。但與氮氣氣氛相比可知,元件於空氣氣氛下之氫氣感測靈敏度不高(373K, 1% H2/air, S=304.9),且此兩者相差約2個數量級。
另外,由NH3及NO2之感測結果顯示,鉑電極對NH3之感測能力較佳,靈敏度為27(373K, 200ppm NH3/N2);而金電極則對NO2具較高之感測能力,靈敏度可達到6.4×103(373K,100ppm NO2/N2)。但兩種氣體在感測後無法回復至原始基線電流值,推測NH3、NO2可能會與二氧化鈦作用而產生毒化現象。
In this study, the TiO2 nanotube arrays (NTAs)/quartz fabricated by anodization were used as resistive-type gas sensors. Firstly, a thin Ti film was deposited on the quartz substrate by RF sputtering. Subsequently, the sample was anodized in an NH4F-H2O-EG electrolyte to form highly ordered TiO2 NTAs. Then, a metal electrode was deposited onto the TiO2 surface to obtain TiO2 NTA/quartz device. Furthermore, the sensing characteristics of the studied devices were investigated on H2, NH3 and NO2 gases, respectively. The effects of metal electrode on gas sensing performance were emphasized. In addition, the gas sensing mechanism was also deduced.
From the experimental results, it indicated that three sensor devices with metal electrodes of Pt, Au and Pd all showed superior sensing ability to H2 more than NH3 and NO2. Comparing these three kinds of gas sensors, it was found that the hydrogen sensitivity was decreased in the sequence as Pt > Pd > Au. The sensitivity of TiO2 NTA/quartz device exposed to 1% H2/N2 at 373K could reach up to 2.85×104. Even at extremely low hydrogen concentration, e.g., 100 ppb H2/N2, the sensitivity still approached to about 1 order. From results of I-t transient responses, the response rate of the Pt/TiO2 NTA/quartz was increased with increasing either temperature or hydrogen concentration. For the hydrogen sensing at 473K under 1% H2/N2 ambience, the response time was only 15s.
When the hydrogen sensing experiments performed in the air ambience, the adsorbed oxygen (O2) was removed from the TiO2 surface by the reaction with hydrogen, and then the oxygen vacancies would be backfill by oxygen from air ambience and formed O2 again. Consequently, the sensing current could reach to the steady-state value rapidly. As compared with the sensitivity in N2 ambience, it showed that the hydrogen sensitivity in air was relatively low (373K, 1% H2/air, S=304.9), which deviated even reaching to about 2 order.
1. B. Timmer, W. Olthuis, and A. Berg, "Ammonia sensors and their applications - a review." Sens. Actuator B-Chem., 107(2) 666-677 (2005)
2. C. Cobianu, C. Savaniu, A. Arnautu, R. Iorgulescu, D. Dascalu, G. Leo, M. Mazzer, R. Rella, P. Siciliano, S. Capone, and L. Vasanelli, "A SnO2 microsensor device for sub-ppm NO2 detection." Sens. Actuator B-Chem., 58(1-3) 552-555 (1999)
3. O. K. Varghese, D. W. Gong, M. Paulose, K. G. Ong, and C. A. Grimes, "Hydrogen sensing using titania nanotubes." Sens. Actuator B-Chem., 93(1-3) 338-344 (2003)
4. L. Chengchao and et al., "Rapid and ultrahigh ethanol sensing based on Au-coated ZnO nanorods." Nanotechnology, 19(3) 035501-035504 (2008)
5. I. Raible, M. Burghard, U. Schlecht, A. Yasuda, and T. Vossmeyer, "V2O5 nanofibres: novel gas sensors with extremely high sensitivity and selectivity to amines." Sens. Actuator B-Chem., 106(2) 730-735 (2005)
6. T. Siciliano, A. Tepore, G. Micocci, A. Serra, D. Manno, and E. Filippo, "WO3 gas sensors prepared by thermal oxidization of tungsten." Sens. Actuator B-Chem., 133(1) 321-326 (2008)
7. P. Clifford and D. Tuma, "Characteristics of semiconductor gas sensors. I- Steady state gas response." Sensor. Actuator., 3 233-281 (1983)
8. P. Clifford and D. Tuma, "Characteristics of semiconductor gas sensors II. Transient response to temperature change." Sensor. Actuator., 3 255-281 (1983)
9. F. Winquist, A. Spetz, I. Lundstrom, and B. Danielsson, "Determination of ammonia in air and aqueous samples with a gas-sensitive semiconductor capacitor." Anal. Chim. Acta, 164 127-138 (1984)
10. I. Lähdesmäki, A. Lewenstam, and A. Ivaska, "A polypyrrole-based amperometric ammonia sensor." Talanta, 43(1) 125-134 (1996)
11. Z. Ding, G. Q. Lu, and P. F. Greenfield, "Role of the Crystallite Phase of TiO2 in Heterogeneous Photocatalysis for Phenol Oxidation in Water." J. Phys. Chem. B, 104(19) 4815-4820 (2000)
12. L. H. Slooff, M. M. Wienk, and J. M. Kroon, "Hybrid TiO2:polymer photovoltaic cells made from a titanium oxide precursor." Thin Solid Films, 451-452 634-638 (2004)
13. E. E. Leary Swan, K. C. Popat, and T. A. Desai, "Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion." Biomaterials, 26(14) 1969-1976 (2005)
14. M. Andersson, L. Osterlund, S. Ljungstrom, and A. Palmqvist, "Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol." J. Phys. Chem. B, 106(41) 10674-10679 (2002)
15. G. L. Li and G. H. Wang, "Synthesis of nanometer-sized TiO2 particles by a microemulsion method." Nanostruct. Mater., 11(5) 663-668 (1999)
16. D. Vorkapic and T. Matsoukas, "Reversible Agglomeration: A Kinetic Model for the Peptization of Titania Nanocolloids." J. Colloid Interf. Sci., 214(2) 283-291 (1999)
17. H. Masuda and K. Fukuda, "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina." Science, 268(5216) 1466-1468 (1995)
18. K. Yasui, K. Nishio, and H. Masuda, "Fabrication of Nanocomposites by Filling Nanoholes in Highly Ordered Anodic Porous Alumina by Vacuum Deposition of Metal." Jap. J. Appl. Phys., 44 L1181-L1183 (2005)
19. M. Sander, A. Prieto, R. Gronsky, T. Sands, and A. Stacy, "Fabrication of high-density, high aspect ratio, large-area bismuth telluride nanowire arrays by electrodeposition into porous anodic alumina templates." Adv. Mater., 14(9) 665-667 (2002)
20. H. Jha, T. Kikuchi, M. Sakairi, and H. Takahashi, "Area-selective microscale metallization on porous anodic oxide film of aluminium." Electrochem. Commun., 9(7) 1596-1601 (2007)
21. V. Zwilling, M. Aucouturier, and E. Darque-Ceretti, "Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach." Electrochim. Acta, 45(6) 921-929 (1999)
22. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, and M. Aucouturier, "Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy." Surf. Interface Anal., 27(7) 629-637 (1999)
23. D. Gong, C. Grimes, O. Varghese, W. Hu, R. Singh, Z. Chen, and E. Dickey, "Titanium oxide nanotube arrays prepared by anodic oxidation." J. Mater. Res., 16(12) 3331-3334 (2001)
24. G. K. Mor, O. K. Varghese, M. Paulose, K. G. Ong, and C. A. Grimes, "Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements." Thin Solid Films, 496(1) 42-48 (2006)
25. G. Mor, O. Varghese, M. Paulose, N. Mukherjee, and C. Grimes, "Fabrication of tapered, conical-shaped titania nanotubes." J. Mater. Res., 18(11) 2588-2593 (2003)
26. D. Kim, A. Ghicov, S. P. Albu, and P. Schmuki, "Bamboo-Type TiO2 Nanotubes: Improved Conversion Efficiency in Dye-Sensitized Solar Cells." J. Am. Chem. Soc., 130(49) 16454-16455 (2008)
27. H. Tsuchiya, J. M. Macak, A. Ghicov, L. Taveira, and P. Schmuki, "Self-organized porous TiO2 and ZrO2 produced by anodization." Corros. Sci., 47(12) 3324-3335 (2005)
28. H. Tsuchiya, J. M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, and P. Schmuki, "Self-organized porous WO3 formed in NaF electrolytes." Electrochem. Commun., 7(3) 295-298 (2005)
29. K. Yasuda, J. M. Macak, S. Berger, A. Ghicov, and P. Schmuki, "Mechanistic Aspects of the Self-Organization Process for Oxide Nanotube Formation on Valve Metals." J. Electrochem. Soc., 154(9) C472-C478 (2007)
30. J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki, "TiO2 nanotubes: Self-organized electrochemical formation, properties and applications." Curr. Opin. Solid State Mater. Sci., 11(1-2) 3-18 (2007)
31. R. K. Nahar and V. K. Khanna, "A study of capacitance and resistance characteristics of an Al2O3 humidity sensor." Int. J. Electron., 52(6) 557 (1982)
32. G. Neri, A. Bonavita, S. Galvagno, P. Siciliano, and S. Capone, "CO and NO2 sensing properties of doped-Fe2O3 thin films prepared by LPD." Sens. Actuator B-Chem., 82(1) 40-47 (2002)
33. C. Bittencourt, E. Llobet, P. Ivanov, X. Correig, X. Vilanova, J. Brezmes, J. Hubalek, K. Malysz, J. J. Pireaux, and J. Calderer, "Influence of the doping method on the sensitivity of Pt-doped screen-printed SnO2 sensors." Sens. Actuator B-Chem., 97(1) 67-73 (2004)
34. R. S. Niranjan, S. R. Sainkar, K. Vijayamohanan, and I. S. Mulla, "Ruthenium: tin oxide thin film as a highly selective hydrocarbon sensor." Sens. Actuator B-Chem., 82(1) 82-88 (2002)
35. D. Manno, G. Micocci, R. Rella, A. Serra, A. Taurino, and A. Tepore, "Titanium oxide thin films for NH3 monitoring: Structural and physical characterizations." J. Appl. Phys., 82(1) 54-59 (1997)
36. H. Tai, Y. Jiang, G. Xie, J. Yu, and X. Chen, "Fabrication and gas sensitivity of polyaniline-titanium dioxide nanocomposite thin film." Sens. Actuator B-Chem., 125(2) 644-650 (2007)
37. I. Hayakawa, Y. Iwamoto, K. Kikuta, and S. Hirano, "Gas sensing properties of platinum dispersed-TiO2 thin film derived from precursor." Sens. Actuator B-Chem., 62(1) 55-60 (2000)
38. J. Y. Park, S. W. Choi, J. W. Lee, C. Lee, and S. S. Kim, "Synthesis and Gas Sensing Properties of TiO2-ZnO Core-Shell Nanofibers." J. Am. Ceram. Soc., 92(11) 2551-2554 (2009)
39. A. K. Prasad, D. J. Kubinski, and P. I. Gouma, "Comparison of sol-gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection." Sens. Actuator B-Chem., 93(1-3) 25-30 (2003)
40. S. S. Sunu, E. Prabhu, V. Jayaraman, K. I. Gnanasekar, T. K. Seshagiri, and T. Gnanasekaran, "Electrical conductivity and gas sensing properties of MoO3." Sens. Actuator B-Chem., 101(1-2) 161-174 (2004)
41. B. T. Marquis and J. F. Vetelino, "A semiconducting metal oxide sensor array for the detection of NOx and NH3." Sens. Actuator B-Chem., 77(1-2) 100-110 (2001)
42. I. M. Szilágyi, L. Wang, P.-I. Gouma, C. Balázsi, J. Madarász, and G. Pokol, "Preparation of hexagonal WO3 from hexagonal ammonium tungsten bronze for sensing NH3." Mater. Res. Bull., 44(3) 505-508 (2009)
43. J. T. L. Royster, D. Chatterjee, G. R. Paz-Pujalt, and C. A. Marrese, "Fabrication and evaluation of thin-film solid-state sensors for hydrogen sulfide detection." Sens. Actuator B-Chem., 53(3) 155-162 (1998)
44. D.-S. Lee, S.-D. Han, S.-M. Lee, J.-S. Huh, and D.-D. Lee, "The TiO2-adding effects in WO3-based NO2 sensors prepared by coprecipitation and precipitation method." Sens. Actuator B-Chem., 65(1-3) 331-335 (2000)
45. M. Egashira, Y. Shimizu, Y. Takao, and S. Sako, "Variations in I-V characteristics of oxide semiconductors induced by oxidizing gases." Sens. Actuator B-Chem., 35(1-3) 62-67 (1996)
46. M. Paulose, O. Varghese, G. Mor, C. Grimes, and K. Ong, "Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes." Nanotechnology, 17 398-402 (2006)
47. G. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko, and C. A. Grimes, "A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination." J. Mater. Res., 19(2) 628-634 (2004)
48. H. Ji, H. Lu, D. Ma, J. Yu, and S. Ma, "Preparation and hydrogen gas sensitive characteristics of highly ordered titania nanotube arrays." Chinese Sci. Bull., 53(9) 1352-1357 (2008)
49. O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. C. Dickey, and C. A. Grimes, "Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure." Adv. Mater., 15(7-8) 624-627 (2003)
50. Q. Chen, D. Xu, Z. Wu, and Z. Liu, "Free-standing TiO2 nanotube arrays made by anodic oxidation and ultrasonic splitting." Nanotechnology, 19 365708 (2008)
51. H. F. Lu, F. Li, G. Liu, Z. G. Chen, D. W. Wang, H. T. Fang, G. Q. Lu, Z. H. Jiang, and H. M. Cheng, "Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors." Nanotechnology, 19(40) (2008)
52. Y. Zhang, W. Fu, H. Yang, Q. Qi, Y. Zeng, T. Zhang, R. Ge, and G. Zou, "Synthesis and characterization of TiO2 nanotubes for humidity sensing." Appl. Surf. Sci., 254(17) 5545-5547 (2008)
53. S. Banerjee, S. K. Mohapatra, M. Misra, and I. B. Mishra, "The detection of improvised nonmilitary peroxide based explosives using a titania nanotube array sensor." Nanotechnology, 20(7) (2009)
54. A. Jaroenworaluck, D. Regonini, C. Bowen, R. Stevens, and D. Allsopp, "Macro, micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte." J. Mater. Sci., 42(16) 6729-6734 (2007)
55. J. Macak, H. Tsuchiya, S. Berger, S. Bauer, S. Fujimoto, and P. Schmuki, "On wafer TiO2 nanotube-layer formation by anodization of Ti-films on Si." Chem. Phys. Lett., 428(4-6) 421-425 (2006)
56. J. L. Zhao, X. H. Wang, R. Z. Chen, and L. T. Li, "Fabrication of titanium oxide nanotube arrays by anodic oxidation." Solid State Commun., 134(10) 705-710 (2005)
57. J. Bai, B. X. Zhou, L. H. Li, Y. B. Liu, Q. Zheng, J. H. Shao, X. Y. Zhu, W. M. Cai, J. S. Liao, and L. X. Zou, "The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte." J. Mater. Sci., 43(6) 1880-1884 (2008)
58. J. M. Macak, H. Tsuchiya, and P. Schmuki, "High-aspect-ratio TiO2 nanotubes by anodization of titanium." Angew. Chem.-Int. Edit., 44(14) 2100-2102 (2005)
59. C. Grimes, "Synthesis and application of highly ordered arrays of TiO2 nanotubes." J. Mater. Chem., 17(15) 1451-1457 (2007)
60. Y. Shimizu, T. Okamoto, Y. Takao, and M. Egashira, "Desorption behavior of ammonia from TiO2-based specimens -- ammonia sensing mechanism of double-layer sensors with TiO2-based catalyst layers." J. Mol. Catal. A-Chem., 155(1-2) 183-191 (2000)
61. 劉慈薇, "二氧化鈦光電極之製備及其在光電化學法產氫之應用", 國立成功大學 碩士論文 (2008)
62. J. L. Tao, J. L. Zhao, C. C. Tang, Y. R. Kang, and Y. X. Li, "Mechanism study of self-organized TiO2 nanotube arrays by anodization." New J. Chem., 32(12) 2164-2168 (2008)
63. Marion E. Franke, Tobias J. Koplin, and U. Simon, "Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?", Small, 2(1) 36-50 (2006)
64. 吳忠燁, "無電鍍法製備鈀/氮化鋁鎵蕭特基二極體氫氣感測器之研究", 成功大學 碩士論文 (2008)
65. J. A. Rodriguez, T. Jirsak, G. Liu, J. Hrbek, J. Dvorak, and A. Maiti, "Chemistry of NO2 on Oxide Surfaces: Formation of NO3 on TiO2(110) and NO2↔O Vacancy Interactions." J. Am. Chem. Soc., 123(39) 9597-9605 (2001)
66. U. Roland, T. Braunschweig, and F. Roessner, "On the nature of spilt-over hydrogen." J. Mol. Catal. A-Chem., 127(1-3) 61-84 (1997)
67. K. H. Rieder, M. Baumberger, and W. Stocker, "Selective Transition of Chemisorbed Hydrogen to Subsurface Sites on Pd(110)." Phys. Rev. Lett., 51(19) 1799 (1983)
68. N. Taşaltın, S. Öztürk, N. Kılınç, and Z. Ziya Öztürk, "Temperature dependence of a nanoporous Pd film hydrogen sensor based on an AAO template on Si." App. Phys. A-Materials, 97(4) 745-750 (2009)
69. J. Miller, B. Meyers, M. Barr, F. Modica, and D. Koningsberger, "Hydrogen temperature-programmed desorptions in platinum catalysts: decomposition and isotopic exchange by spillover hydrogen of chemisorbed ammonia." J. Catal., 159(1) 41-49 (1996)
70. M. Haruta, "Novel catalysis of gold deposited on metal oxides." Catal. Surv. Jpn., 1(1) 61-73 (1997)
71. V. Plashnitsa, T. Ueda, P. Elumalai, T. Kawaguchi, and N. Miura, "Zirconia-based planar NO2 sensor using ultrathin NiO or laminated NiO–Au sensing electrode." Ionics, 14(1) 15-25 (2008)
72. C. Grimes and G. K. Mor, "TiO2 Nanotube Arrays: Synthesis, Properties, and Applications ", United States of America: Springer Dordrecht Heidelberg London New York, 358 (2009)