簡易檢索 / 詳目顯示

研究生: 朱國瑋
Chu, Gour-Weei
論文名稱: 多功能服務用機器人之研製
Development of a Multi-Functional Service Robot
指導教授: 蔡清元
Tsay, Tsing-Iuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 98
中文關鍵詞: 移動式機械手臂類神經模糊控制器視覺導引反應式導航全域覆蓋
外文關鍵詞: mobile manipulator, neural fuzzy controllers, vision-guided, reactive navigation methods, complete coverage
相關次數: 點閱:94下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來科技發展迅速,為了提升人類生活品質,機器人的研究開始朝向於日常生活的應用。本論文的目標為設計一多功能服務型機器人,以其執行物件遞送與空間清掃覆蓋之任務。
    物件的送任務分為兩階段,第一階段中機器人利用基於雷射測距儀之反應式導航系統,在沒有已知環境資訊的狀況下,透過預先設計之參數式軌跡產生器找到避免碰撞的最佳移動路徑,過程中經由星空之眼定位系統判定機器人是否到達給定之目的地。第二階段中,利用一未經校準的眼在手視覺系統來提供視覺資料,透過一具有以行為基礎之看而後動架構之視覺導引控制策略,來抓取所需遞送之物件。最後於清掃任務,本研究藉由雷射測距儀偵測空間中障礙物之距離及利用其梯度函數找出障礙物臨界點,作為空間分割之依據。機器人在分割後子區域內進行直線往復運動達到區域覆蓋,並以前向和後向追蹤依序覆蓋所有空間中的子區域。
    最後,透過一系列的實驗來確認所發展的多功能服務用機器人之性能。

    With the rising development of technology, in order to improve the quality of life, research in robot science is gradually focusing on applications to household tasks. The objective of this thesis is to develop a multi-functional service robot, which can execute material-transferring and cleaning tasks.
    In the task of material transferring, the service robot moves in two stages. In the first stage of movement, a reactive navigation algorithm based on a laser range finder is applied to find an optimal collision-free moving path through pre-designed parameterized trajectory generators without any environmental information, while the relationship between the instant locations of the service robot and the destination is determined with the StarGazer module. Then, in the second stage of movement, visual information for controlling the manipulator to grasp the target object is acquired from an uncalibrated eye-in-hand visual system. A vision-guided control strategy with a behavior-based look-and-move structure is utilized to grasp the target object. In the task of cleaning, critical points on obstacles are sensed with a laser range finder as the service robot moving around. According to the distance between the robot and obstacles and its gradient function, surrounding environment can be divided into several sub-areas such that each sub-area can be covered by back and forth motions. Complete coverage is then guaranteed by constructing the Reeb graph to track uncovered sub-areas.
    Finally, a set of experiments are conducted to verify the performance of the developed multi-functional service robot.

    中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 x 符號目錄 xi 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 文獻回顧 2 1.4 研究貢獻 3 1.5 內容與架構 4 第二章 機械手臂之建構及機器人系統之介紹 5 2.1 機械手臂之建構 6 2.2 全方向輪式底盤 10 2.3 電動掃帚 14 2.4 機器人感測元件 15 2.4.1 雷射測距儀 15 2.4.2 星空之眼 16 2.4.3 網路攝影機 17 2.5 硬體控制架構 18 第三章 機械人之反應式導航系統 20 3.1 軌跡參數空間 20 3.2 參數式軌跡產生器 22 3.3 參數式軌跡產生器之設計 29 3.4 完整之反應式導航系統 33 第四章 基於感測器的全域覆蓋演算法 35 4.1 全域覆蓋下的路徑規劃 35 4.2 基於Morse理論的區域分割 36 4.2.1 臨界點偵測 36 4.2.2 割線連通性 38 4.2.3 子區域路徑規劃 39 4.2.4 全區域覆蓋的拓樸圖 40 4.3 完整的全域覆蓋演算法 42 第五章 機械手臂之運動學分析 43 5.1 機械手臂之座標系統 43 5.2 機械手臂之順向運動學 47 5.3 機械手臂之逆向運動學 48 5.4 機械手臂之速度運動學 50 5.5 機械手臂工作空間之軌跡規劃 52 5.5.1 空間之直線路徑 52 5.5.2 軌跡之規劃 53 5.6 OpenGL視覺化模擬環境 55 第六章 行為基礎之機械手臂抓取控制 58 6.1 影像處理 58 6.1.1 影像區塊之分割 58 6.1.2 影像特徵之處理 61 6.2 影像特徵選取 65 6.3 基於行為模式之動作規劃 67 6.3.1 逼近(Approach) 67 6.3.2 類神經模糊控制器 68 6.4 粗略運動轉換(Rough Motion Transformation) 72 6.5 控制策略 73 第七章 實驗 75 7.1 實驗設置 75 7.2 類神經模糊控制器的參數設計 78 7.3 反應式導航系統之實驗 80 7.4 眼在手機械手臂之定位實驗 84 7.5 全域覆蓋清潔之實驗 88 第八章 結論 91 8.1 總論 91 8.2 未來發展 92 參考文獻 94

    [1]. E.U. Acar and H. Choset, “Sensor-based Coverage of Unknown Environments: Incremental Construction of Morse Decompositions,” The International Journal of Robotics Research, Vol. 25, pp.345-366, Apr. 2002.
    [2]. M. A. Aizerman, E. M. Braverman and L. I. Rozonoer, “Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning,” Autom. Remote Control, Vol. 25, 1964.
    [3]. A. Anglani, F. Taurisano, R. De Giuseppe and C. Distante, “Learning to Grasp by using Visual Information,” Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp.7-14, Nov. 1999.
    [4]. J.-L. Blanco, J. Gonzaléz and J.-A. Fernández-Madrigal, “Extending Obstacle Avoidance Methods through Multiple Parameter-Space Transformation,” Auton Robot, Vol 24, pp.29-48, 2008.
    [5]. B. E. Boser, I. Guyon and V. N. Vapnik, “A Training Algorithm for Optimal Margin Classifiers,” Proceedings of the Fifth Annual Workshop on Computational Learning Theory 5, pp. 144-152, 1992.
    [6]. L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun, U. Muller, E. Sackinger, P. Simard and V. Vapnik, “Comparision of Classifier Methods: A Case Study in Handwriting Digit Recognition,” IEEE Computer Society Press In International Conference on Pattern Recognition, pp. 77-87, 1994.
    [7]. C. J. C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Mining and Knowledge Discovery, pp. 1–47, 1998.
    [8]. A. J. Colmenarez, B. Frey and T. S. Huang, “Detection and Tracking of Faces and Facial Features,” Proceedings of the International Conference on Image Processing, Vol. 1, pp. 657-661, Oct. 1999.
    [9]. J. J. Craig, Introduction of Robotics Mechanics & Control, Addision-Wesley, 1986.
    [10]. R. D. Giuseppe, F. Taurisano, C. Distante and A. Anglani, “Visual Servoing of a Robotic Manipulator Based on Fuzzy Logic Control,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 2, pp.1487-1494, May 1999.
    [11]. C. W. Hsu and C. J. Lin, “A Comparison of Methods for Multi-class Support Vector Machines,” IEEE Transactions on Neural Networks, pp.415-425, 2002.
    [12]. W. Khalil and J. F. Kleinfinger, “A New Geometric Notation for Open and Closed Loop Robots,” Proceedings of IEEE International Conference on Robotics and Automation, pp.1174-1180, 1986.
    [13]. U. KreBel, Pairwise Classification and Support Vector Machines. Advances in Kernel Methods-Support Vector Learning, MIT Press , Cambridge, pp. 254-268, 1999.
    [14]. C. H. Lai, Design and Control of an Anthropomorphic Robot, Master Thesis, Dept. of Mechanical Eng., Nation Cheng Kung University, 2003.
    [15]. E. D. Orin and W. W. Schrader, “Efficient Computation of the Jacobian for Robot Manipulator,” The International Journal of Robotics Research, Vol.3, No.4, pp.66-75, 1984.
    [16]. S. Parasuraman, V. Ganapathy and B. Shirinzadeh, “Behavior Based Mobile Robot Navigation Technique using AI System : Experimental Investigations,” Proceeding of ARAS Conference, December 2005.
    [17]. J. C. Platt, N. Cristianini and J. Shawe-Taylor. Large Margin DAGs for Multiclass Classification. In Advances in Neural Information Processing Systems, MIT Press, Vol. 12, pp. 547-553, 2000.
    [18]. M. Pontil, and A. Verri, “Support Vector Machines for 3D Object Recognition,” IEEE Trans. on Pattern Analysis and Machine Intelligence, pp. 637–646, 1998.
    [19]. H. A. Rowley, S. Baluja and T. Kanade, “Neural Network-Based Face Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, Issue 1, pp. 23-38, Jan. 1998.
    [20]. P. Rusu, E. M. Petriu, T. E. Whalen, A. Cornell and H. J. W. Spoelder, “Behavior-based Neuro-fuzzy Controller for Mobile Robot Navigation,” IEEE Transactions on Instrumentation and Measurement, Vol. 52, Issue 4, pp. 1335- 1340, Aug. 2003.
    [21]. A. Saffiotti, “Fuzzy Logic in Autonomous Robotics: Behavior Coordination,” Proceedings of the IEEE International Conference on Fuzzy Systems, Vol. 1, pp. 573-578, July 1997.
    [22]. L. Sciavicco and B. Siciliano, ”Modeling and Control of Robot Manipulators,” New York: McGraw-Hill Company, Inc. 1996.
    [23]. J. Terrillon, M. Sadek, H. Fukamachi and S. Akamatsu, “Invariant Face Detection with Support Vector Machines,” Proceedings of the 15th International Conference on Pattern Recognition, Vol. 4, pp. 210-217, Sep. 2000.
    [24]. Z. Wasik and A. Saffiotti, “A Hierarchical Behavior-Based Approach to Manipulation Tasks,” Proceedings of the IEEE International Conference on Robots and Automation, pp.2780-2785, Set. 2003.
    [25]. Z. Wasik and A. Saffiotti, “A Fuzzy Behavior-Based Control System for Manipulation,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1596-1601, Oct. 2002.
    [26]. 林鎮源,移動式機器人之行為融合控制設計,國立交通大學,碩士論文,民國94年。

    下載圖示 校內:2016-09-01公開
    校外:2020-09-01公開
    QR CODE