| 研究生: |
楊智量 Yang, Chih-Liang |
|---|---|
| 論文名稱: |
藉pH值控制混合之固相反應製備的 YAG:Ce 粉體分析及其螢光性質 Powder Characteristics and Fluorescence Property of a Solid-State Prepared YAG:Ce via pH-Controlled Mixing |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 固相反應法 、釔鋁石榴石 、分散 、螢光粉 |
| 外文關鍵詞: | YAG:Ce, solid-state reaction, pH, dispersed, phosphor |
| 相關次數: | 點閱:53 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
白光 LED 由於具有環保、節能的優點,可望在未來 5~ 10 年內取代傳統室內照明,因此廣泛的被探討。而釔鋁石榴石(YAG)因其獨特結構,在添加微量稀土元素(如:Ce)後便具有發光的特性,所以適合作為高亮度白光 LED用之螢光粉體。
綜合前人研究之結果可知,製備 YAG 螢光粉體多採用可在較低溫合成之化學法,鮮少採用具有較高發光強度之傳統固相反應法,然影響 YAG 螢光粉體發光特性之因素主要為晶粒大小、晶粒形狀與結晶度,因此本研究揉合傳統固相反應法與化學法的優點,藉由控制 pH 值的方式使固相反應物均勻混合,降低合成純相 YAG:Ce 螢光粉體的反應溫度及時間(可於 1300℃/24 h 或 1350℃/16 h 合成純相 YAG:Ce螢光粉體),並搭配噴霧乾燥之技術合成具有 um-scale 單晶晶粒之分散螢光粉體,不但可以改善傳統固相反應法混合不均的問題與化學法產生凝聚之難題,同時亦可提高 YAG:Ce 螢光粉體之螢光性質。
Abstract
This research combines the advantages of conventional solid-state reaction method and chemical methods to synthesize pure YAG:Ce phosphor via pH-controlled mixing. Compare with conventional solid-state reaction method, pure YAG:Ce phosphor could be obtained at 1300℃/ 24 h or 1350℃/ 16 h through this method. Besides, dispersed phosphor with um-scale single crystal could also be obtained at 1500℃/ 4 h via pH-controlled mixing with spray drying. Because of improving of the problems of mixedness from the conventional solid-state reaction method and the puzzles of agglomeration from the chemical methods, the YAG:Ce via pH-controlled mixing could also have the better luminescent property.
1. 陳昱霖,石榴石(Y3Al5O12)螢光體之合成與性質研究,國立成功大學材料科學及工程
學系碩士論文,民國90年。
2. 黃渝晨,硫化鋅共摻雜銅、錳之發光特性研究,逢甲大學化學工程學系碩士論文,民國
92年。
3. 劉如熹、紀喨勝,紫外光發光二極體用螢光粉介紹,全華圖書,台灣台北,2002。
4. R. Roy, Experimenting with Truth,, Pergamon, New York (1980).
5. A. Putnis, Introduction to Mineral Science, Cambridge University Press, New
York (1992).
6. D. J. Robbins, “The effect of crystal field and temperature on the photo-
luminescence excitation efficiency of Ce3+ in YAG,” Journal of
Electrochemical Society, 126 [9] 1550-1555 (1979).
7. M. J. Weber, Phosphor Handbook, CRC Press, Boca Raton, (1999).
8. G. Blasse and B. C. Grabmaier, Luminescent Materials, Springer-Verlag, New
York, (1994).
9. J. A. Deluca, “An Introduction to Luminescence in Organic Solids,”
Journal of Chemical Education, 57 [8] 541-545 (1980).
10. 石景仁,白光發光二極體用之石榴石螢光粉合成及特性分析,國立台灣大學化學研究
所碩士論文,民國90年。
11. K. M. Kinsman and J. McKittrick, “Phase development and luminescence in
chromium-doped yttrium, aluminum garnet (YAG:Cr) phosphors,” Journal of
the American Ceramic Society, 77 [11] 2866-2872 (1994).
12. C. K. Ullal, K. R. Balasubramaniam, A. S. Gandhi and V. Jayaram, “Non-
equilibrium phase synthesis in Al2O3-Y2O3 by spray pyrolysis of nitrate
precursors,” Acta Materialia, 49 2691-2699 (2001).
13. H. S. Yoder and M. L. Keith, “Complete substitution of aluminum for
silicon:the system 3MnO.Al2O3.3SiO2-3Y2O3.5Al2O3,” American
Mineralogist, 36 519 (1951).
14. K. Ohno and T. Abe, “Effect of BaF2 on the synthesis of the single-phase
cubic Y3Al5O12:Tb,” Journal of Electrochemical Society, 133 638-643
(1986).
15. K. Ohno and T. Abe, “Bright green phosphor, Y3Al5-xGaxO12:Tb, for
projection CRT,” Journal of Electrochemical Society, 134 2072-2076 (1987).
16. P. Apte, H. Burke and H. Pickup, “Synthesis of yttrium aluminum garnet by
reverse strike precipitation,” Journal of Materials Research, 7 [3] 706-
711 (1992).
17. Q. Li, L. Gao, and D. Yan, “The crystal structure and spectra of nano-
scale YAG:Ce3+,” Material Chemistry and Physics, 64 41-44 (2000).
18. Y. C. Kang, I. W. Lenggoro, S. B. Park and K. Okuyama, “YAG:Ce phosphor
particles prepared by ultrasonic spray pyrolysis,” Materials Research
Bulletin, 35 789-798 (2000).
19. S. Shi and J. Wang, “Combustion synthesis of Eu3+ activated Y3Al5O12
phosphor nanoparticles,” Journal of Alloys and Compounds, 327 82-86 (2001).
20. Y. H. Zhou, J. Lin, S. B. Wang and H. J. Zhan, “Preparation of
Y3Al5O12:Eu phosphors by citric-gel method and their luminescent
properties,” Optical Materials, 20 13-20 (2002).
21. C. H. Lu and R. Jagannathan, “Cerium-ion-doped yttrium aluminum garnet
nanophosphors prepared through sol-gel pyrolysis for luminescent
lighting,” Applied Physics Letters, 80 [19] 3608-3610 (2002).
22. D. Hreniak, W. Strezk, P. Mazur, R. Pazik and M. Zazbkowska-Wacławek,
“Luminescence properties of Tb3+:Y3Al5O12 nanocrystallite sprepared by the
sol-gel method,” Optical Materials, 26 117-121 (2004).
23. C. H. Lu, W. T. Hsu, J. Dhanaraj and R. Jagannathan, “Sol-gel pyrolysis
and photoluminescent characteristics of europium-ion doped yttrium aluminum
garnet nanophosph,” Journal of the European Ceramic Society, 24 3723-3729
(2004).
24. L. Wen, X. Sun, Z. Xiu, S. Chen and C. T. Tsai, “Synthesis of
nanocrystalline yttria powder and fabrication of transparent YAG
ceramics,” Journal of the European Ceramic Society, 24 2681-2688 (2004).
25. G. Del Rosario, S. Ohara, L. Mancic and O. Milosevic, “Characterisation
of YAG:Ce powders thermal treated at different temperatures,” Applied
Surface Science, 238 469-474 (2004).
26. M. S. Tsai, M. F. Wan, C. S. Hsiao, “A study of YAG:Ce powder formation
via ammonium carbonate precipitation,” revised by Materials Research
Bulletin, (2005)
27. X. Li, H. Liu, J. Wang, H. Cui and F. Han, “YAG:Ce nano-sized phosphor
particles prepared by a solvothermal method,” Materials Research Bulletin,
39 1923-1930 (2004).
28. A. Ikesue, K. Kamata and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG
ceramics for high-efficiency solid-state lasers” Journal of the American
Ceramic Society, 78 2545-2547 (1995).
29. Y. Pan, M. Wu, Q. Su, “Comparative investigation on synthesis and
photoluminescence of YAG:Ce phosphor,” Materials Science and Engineering
B, 106 251-256 (2004).
30. I. Matsubara, M. Paranthaman, S. W. Allison, M. R. Cates, D. L. Beshears
and D. E. Holcomb, Materials Research Bulletin, 35 217-224 (2000).
31. F. Yuan and H. Ryu, “Ce-doped YAG phosphor powders prepared by co-
precipitation and heterogeneous precipitation,” Materials Science and
Engineering B, 107 14-18 (2004).
32. Y. Zhou, J. Lin, M. Yu and S. Wang, “Comparative study on the luminescent
properties of Y3Al5O12:RE3+ (RE: Eu, Dy) phosphors synthesized by three
methods,” Journal of Alloys and Compounds, 375 93-97 (2004).
33. J. S. Reed, Principles of ceramics processing, Wiley Interscience, New
York (1995).