| 研究生: |
許朝政 Hsu, Chao-Cheng |
|---|---|
| 論文名稱: |
固態鎂基鹽質離子導體材料特性與充放電機制研究 A Study on Material Properties and Charge-discharge Mechanism of Magnesium-based Solid-state Ionic Conductors |
| 指導教授: |
洪飛義
Hung, Fei-Yi 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 鎂電池 、固態電解質 、離子導電率 、天然鹽礦 、離子改質 |
| 外文關鍵詞: | Magnesium battery, Solid-state electrolyte, Ionic conductivity, Natural-ore, Ion modification |
| 相關次數: | 點閱:58 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今鋰電池在充放電時,會在負極產生樹枝狀晶沉澱,且電解液劇毒,進而影響電池的使用安全性,本實驗研究鎂電池,不僅在安全考量與電容量上具有優勢,且價格也較便宜。本實驗以固態電解質取代傳統液態有機電解液,以達到最大安全性的目的,然而,固態電解質通常在高溫時具有良好離子傳導率,而在常溫時表現不佳,研究尋找常溫時具有高離子導電率的鎂基固態電解質,有別於過去文獻,不單研究其離子特性,並將其實際組裝成電池,進行電池效能探討,最後進行機制探討。
本研究製備Mg3(PO4)2、Mg0.5Ti2(PO4)3、Na-ore和Na(Mg)-ore四種不同結構的材料,結果顯示,Mg3(PO4)2和Mg0.5Ti2(PO4)3原材和經800℃熱處理材皆因在常溫離子導電率低而不適合做為固態電解質,而Na-ore和Na(Mg)-ore原材因(100)晶面間的結晶水會共伴離子進行傳導,促使在常溫時有較高離子導電率,可選用為固態電解質使用,而800℃熱處理材由於層間結晶水的脫離,造成離子導電率下降,故選擇Na-ore和Na(Mg)-ore原材組裝成電池進行效能探討。Na(Mg)-ore不論在較高電流充放表現或高溫充放表現皆較Na-ore佳,CV數據確認Na(Mg)-ore有較好放電能力,傳遞機制皆是由(100)間結晶水共伴離子傳導主導,且Na(Mg)-ore為Na-ore和含結晶水的硝酸鎂的複合物組成,在充放電時,由硝酸鎂提供Na(Mg)-ore消耗的層間結晶水,使得其放電能力較Na-ore好。Mg/SSE-Na(Mg)-ore/C所組成的電池不管是在高電流(0.02mA)或是高溫(85℃)表現皆較Na-ore佳,推測是由於改質使得Na-ore層間可移動離子數增加,進而使其放電能力提升,達到提升效能的效果。
When lithium batteries charge and discharge, dendrite tend to deposit on the negative electrode. This leads to safety issues. Therefore, this research conducts magnesium batteries in which there are not only the advantage of safety, but also the cheaper price. To further improve the safety of the magnesium batteries, this experiment replaces traditional liquid organic electrolyte with solid electrolyte. However, ionic conductivity of solid electrolyte usually is so bad at room temperature, so the purpose of research is to search magnesium-based solid electrolyte which is high ionic conductivity at room temperature. Different from the past literature, firstly, this research conduct ionic characteristics of solid electrolyte. Secondly, we actually assemble it into a magnesium battery and discuss the efficiency of battery. In the end, we research the mechanism behavior.
Mg3(PO4)2, Mg0.5Ti2(PO4)3, Na-ore, and Na(Mg)-ore are four different structural materials. The experimental results show that Mg3(PO4)2 and Mg0.5Ti2(PO4)3 Both raw materials and heat-treated materials at 800°C are not suitable as solid electrolytes due to too low ionic conductivity at room temperature, while the Na-ore and Na(Mg)-ore raw materials are suitable for use as a solid electrolyte due to the crystal water between the (100) crystal faces which leads to a higher ionic conductivity at room temperature. The 800°C heat treated material of Na-ore and Na(Mg)-ore causes a drop in ionic conductivity due to the detachment of crystal water between the layers. To sum up, Na-ore and Na(Mg)-ore were selected for the solid-state electrolyte and are assembled into batteries for efficiency.
1. S. Su, Z. Huang, Y. NuLi, F. Tuerxun, J. Yangb and J. Wang, A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chemical Communications, 51(13), pp. 2641-2644, 2015.
2. D. Aurbach, Y. Gofer, Z. Lu, A. Schechter, O. Chusid, H. Gizbar, Y. Cohen, V. Ashkenazi, M. Moshkovich, R. Turgeman, E. Levi, A short review on the comparison between Li battery systems and rechargeable magnesium battery technology, Journal of Power Sources, 97–98, pp. 28-32, 2001.
3. H. Park, K. Jung, M. Nezafati, C. S. Kim and B. Kang, Sodium Ion Diffusion in Nasicon (Na3Zr2Si2PO12) Solid Electrolytes: Effects of Excess Sodium, ACS applied materials & interfaces, 8(41), pp. 27814-27824, 2016.
4. M. C. Lin, M. Gong, B. Lu, Y. Wu, D. Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B. J. Hwang and H. Dai, An ultrafast rechargeable aluminium-ion battery, Nature, 520(7547), 324, 2015.
5. D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich and E. Levi, Prototype systems for rechargeable magnesium batteries. Nature, 407(6805), 724, 2000.
6. T. S. Arthur, N. Singh and M. Matsui, Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries, Electrochemistry Communications, 16(1), pp. 103-106, 2012.
7. P. Novák, R. Imhof and O. Haas, Magnesium insertion electrodes for rechargeable nonaqueous batteries—a competitive alternative to lithium?, Electrochimica Acta, 45(1-2), pp. 351-367, 1999.
8. J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414(6861), pp. 359-367, 2001.
9. H. D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour and D. Aurbach, Mg rechargeable batteries: an on-going challenge, Energy & Environmental Science, 6(8), pp. 2265-2279, 2013.
10. 黃可龍, 王兆翔, 劉素琴, 鋰離子電池原理及技術, 五南圖書出版社, 2010。
11. K. Senevirathne, C. S. Day, M. D. Gross, A. Lachgar and N. A. W. Holzwarth, A new crystalline LiPON electrolyte: Synthesis, properties, and electronic structure. Solid State Ionics, 233, pp. 95-101, 2013.
12. N. Imanaka, Y. Okazaki and G. Y. Adachi, Divalent magnesium ion conducting characteristics in phosphate based solid electrolyte composites. Journal of Materials Chemistry, 10(6), pp. 1431-1435, 2000.
13. B. Lang, B. Ziebarth and C. Elsässer, Lithium ion conduction in LiTi2 (PO4)3 and related compounds based on the NASICON structure: a first-principles study. Chemistry of Materials, 27(14), pp. 5040-5048, 2015.
14. E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu and T. C. Chung, Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chemistry of Materials, 13(10), pp. 3516-3523, 2001.
15. D. Aurbach, G. S. Suresh, E. Levi, A. Mitelman, O. Mizrahi, O. Chusid and M. Brunelli, Progress in rechargeable magnesium battery technology. Advanced Materials, 19(23), pp. 4260-4267, 2007.
16. R. Mohtadi and F. Mizuno, Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein journal of nanotechnology, 5, p. 1291, 2014.
17. S. Higashi, K. Miwa, M. Aoki and K. Takechi, A novel inorganic solid state ion conductor for rechargeable Mg batteries. Chemical Communications, 50(11), pp. 1320-1322, 2014.
18. Y. Orikasa, T. Masese, Y. Koyama, T. Mori, M. Hattori, K. Yamamoto, T. Okado, Z. D. Huang, T. Minato, C. Tassel, J. Kim, Y. Kobayashi, T. Abe, H. Kageyama and Y. Uchimoto, High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Scientific reports, 4, 5622, 2014.
19. E. Levi, M. D. Levi, O. Chasid and D. Aurbach, A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. Journal of electroceramics, 22(1-3), pp. 13-19, 2009.
20. Y. NuLi, J. Yang, J. Wang and Y. Li. Electrochemical intercalation of Mg2+ in magnesium manganese silicate and its application as high-energy rechargeable magnesium battery cathode. The Journal of Physical Chemistry C, 113(28), pp. 12594-12597, 2009.
21. L. F. Wan, B. R. Perdue, C. A. Apblett and D. Prendergast, Mg desolvation and intercalation mechanism at the Mo6S8 chevrel phase surface. Chemistry of Materials, 27(17), pp. 5932-5940, 2015.
22. M. E. Spahr, P.Novak, O. Haas and R. Nesper, Electrochemical insertion of lithium, sodium, and magnesium in molybdenum (VI) oxide. Journal of power sources, 54(2), pp.346-351, 1995.
23. S. Hebié, F. Alloin, C. Iojoiu, R. Berthelot and J. C. Leprêtre, Magnesium Anthracene Systems Based-Electrolyte as promoter of High Electrochemical Performance Rechargeable Magnesium Batteries. ACS applied materials & interfaces, 10(6), pp. 5527-5533, 2018.
24. T. D. Gregory, R. J. Hoffman and R. C. Winterton, Nonaqueous electrochemistry of magnesium applications to energy storage. Journal of The Electrochemical Society, 137(3), pp. 775-780. 1990.
25. F. Wang, X. Fan, T. Gao, W. Sun, Z. Ma, C. Yang, F. Han, K. Xu and C. Wang, High-Voltage Aqueous Magnesium Ion Batteries. ACS central science, 3(10), pp. 1121-1128, 2017.
26. T. Mandai, Y. Akita, S. Yagi, M. Egashira, H. Munakata and K. Kanamura, A key concept of utilization of both non-Grignard magnesium chloride and imide salts for rechargeable Mg battery electrolytes. Journal of Materials Chemistry A, 5(7), pp. 3152-3156, 2017.
27. H. Zhang, K. Ye, K. Zhu, R. Cang, X. Wang, G. Wang and D. Cao, Assembly of Aqueous Rechargeable Magnesium Ions Battery Capacitor: The Nanowire Mg-OMS-2/Graphene as Cathode and Activated Carbon as Anode. ACS Sustainable Chemistry & Engineering, 5(8), pp. 6727-6735, 2017.
28. D. Aurbach, I. Weissman, Y. Gofer and E. Levi, Nonaqueous magnesium electrochemistry and its application in secondary batteries. The Chemical Record, 3(1), pp. 61-73, 2003.
29. Z. Zhang, Z. Cui, L. Qiao, J. Guan, H. Xu, X. Wang, P. Hu, H. Du, S. Li, X. Zhou, S. Dong, Z. Liu, G. Cui and L. Chen, Novel Design Concepts of Efficient Mg‐Ion Electrolytes toward High‐Performance Magnesium–Selenium and Magnesium–Sulfur Batteries. Advanced Energy Materials, 7(11), p. 1602055, 2017.
30. J. Yang, S. C. Wang, X. Y. Zhou and J. Xie, Electrochemical behaviors of functionalized carbon nanotubes in LiPF6/EC+ DMC electrolyte. International Journal of Electrochemical Science, 7, pp. 6118-6126. 2012.
31. A. Abouimrane, J. Ding and I. J. Davidson. Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations. Journal of Power Sources, 189(1), pp.693-696, 2009.
32. H. Yang, G. V. Zhuang and P. N. Ross Jr, Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. Journal of Power Sources, 161(1), pp.573-579, 2006.
33. T. Mandai, Y. Akita, S. Yagi, M. Egashira, H. Munakata and K. Kanamura, A key concept of utilization of both non-Grignard magnesium chloride and imide salts for rechargeable Mg battery electrolytes. Journal of Materials Chemistry A, 5(7), pp. 3152-3156. 2017.
34. F. M. Gray and F. M. Gray, Solid polymer electrolytes: fundamentals and technological applications . New York: VCH, pp.88-93, 1991.
35. F. Croce, G. B. Appetecchi, L. Persi and B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries. Nature, 394(6692), 456, 1998.
36. F. Garcia-Alvarado, A. Varez, E. Moran and M. A. Alario-Franco, Structural details and lithium intercalation in the perovskite La0. 5Li0. 5TiO3. Phase Transitions, 58(1-3), pp.111-120, 1996.
37. R. Murugan, V. Thangadurai and W. Weppner, Fast lithium ion conduction in garnet‐type Li7La3Zr2O12. Angewandte Chemie International Edition, 46(41), pp. 7778-7781. 2007.
38. V. Thangadurai, H. Kaack and W. J. Weppner, Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M= Nb, Ta). Journal of the American Ceramic Society, 86(3), pp.437-440, 2003.
39. F. Mizuno, A.Hayashi, K. Tadanaga and M. Tatsumisago, New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses. Advanced Materials, 17(7), pp.918-921. 2005.
40. R. Kanno and M. Murayama, Lithium Ionic Conductor Thio-LISICON: The Li2SGeS2P2S5 System. Journal of the electrochemical society, 148(7), A742-A746, 2001.
41. C. Ling, D. Banerjee, W. Song, M. Zhang and M. Matsui, First-principles study of the magnesiation of olivines: redox reaction mechanism, electrochemical and thermodynamic properties. Journal of Materials Chemistry, 22(27), pp. 13517-1352, 2012.
42. 李文龙, 刘欢, 杨利青, 郭滨, 胡炜杰, 王浩静, 共沉淀法制备 NASICON 型 Mg0.5Zr2(PO4)3 镁离子固态电解质。 功能材料, 48(1),pp. 1195-1198, 2017。
43. E. Roedern, R. S. Kühnel, A. Remhof and C. Battaglia, Magnesium Ethylenediamine Borohydride as Solid-State Electrolyte for Magnesium Batteries. Scientific reports, 7, 46189, 2017.
44. P. Canepa, S. H. Bo, G. S. Gautam, B. Key, W. D.Richards, T. Shi, Y. Tian, Y. Wang, J. Li and G. Ceder, High magnesium mobility in ternary spinel chalcogenides. Nature communications, 8(1), 1759. 2017.
45. B. Zhang, R. Tan, L. Yang, J. Zheng, K. Zhang, S. Mo, Z. Lin and F. Pan, Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials, 10, pp. 139-159, 2018.
46. Ionic Conductivity and Solid Electrolytes (http://staff.ustc.edu.cn/~ychzhu/Solid_State_Chemistry/04-2-Ionic%20Conductivity.pdf )
47. Y. Zhao, Z. Wei, Q. Pang, Y. Wei, Y. Cai, Q. Fu, F. Du, A. Sarapulova, H. Ehrenberg, B. Liu and G. Chen, NASICON-type Mg0.5Ti2(PO4)3 negative electrode material exhibits different electrochemical energy storage mechanisms in na-ion and li-ion batteries. ACS applied materials & interfaces, 9(5), pp. 4709-4718, 2017.
48. R. Ma, Y. Yang, S. Pan, Y. Sun and Z. Yang, Structure comparison and optical properties of Na7Mg4.5(P2O7)4: a sodium magnesium phosphate with isolated P2O7 units. New Journal of Chemistry, 41(9), pp. 3399-3404, 2017.
49. S. Tamura, M. Yamane, Y. Hoshino and N. Imanaka, Highly conducting divalent Mg2+ cation solid electrolytes with well-ordered three-dimensional network structure. Journal of Solid State Chemistry, 235, pp. 7-11, 2016.
50. K. Norrish, The swelling of montmorillonite. Discussions of the Faraday society, 18, pp.120-134, 1954.
51. 楊凱元,鋁鎵表面被覆改質錳酸鋰粉末之結晶化與高低溫充放電機制,國立成功大學材料科學及工程學系碩士論文,2015。
52. S. Breuer, D. Prutsch, Q. Ma, V. Epp, F. Preishuber-Pflügl, F. Tietz and M. Wilkening, Separating bulk from grain boundary Li ion conductivity in the sol–gel prepared solid electrolyte Li1.5Al0.5Ti1.5(PO4)3. Journal of Materials Chemistry A, 3(42), pp. 21343-21350, 2015.
53. A. Ubowska, Montmorillonite as a Polyurethane Foams Flame Retardant. Archivum Combustionis, 30(4), pp. 459-462, 2010.
校內:2023-09-01公開