| 研究生: |
張紘聞 Chang, Hung-Wen |
|---|---|
| 論文名稱: |
應用WWIII 波浪模式於極端波高模擬之研究 A Study on the Extreme Wave Height Simulations by WAVEWATCH III |
| 指導教授: |
董東璟
Doong, Dong-Jiing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | WAVEWATCH III 、颱風 、極端波高 、物理套組 |
| 外文關鍵詞: | WAVEWATCH III, typhoon, extreme wave height, source term packages |
| 相關次數: | 點閱:95 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
颱風是種變化劇烈的天氣系統,颱風圈內的風力極強,風向風速隨地而異,波浪分布因此到處都不同,由於最大波高在海事工程設計上有著重大的意義,因此模擬颱風期間最大波高成了很重要的課題。本研究應用WAVEWATCH III波浪模式(簡稱WW3),針對過去9件實際量測到颱風期間最大波高超過10公尺的案例進行波浪推算。透過不同物理套組與各國(台灣、法國、美國)單位所提供之套組參數設定對所選定之案例進行模擬,藉以了解WW3在模擬颱風極端波高之能力。根據模擬與浮標實測資料比較結果顯示,WW3內定的ST2、ST4、ST6套組在整體颱風波浪模擬上都有不錯的表現,但在極端波高模擬時有低估現象,其中以ST6套組模擬結果相對誤差14%為最小。而使用各國作業化單位所建議的套組參數進行模擬時,颱風整體波高結果顯示,ST2套組中風浪成長項的風速修正參數(c0)與ST6套組中風浪成長項的阻力係數修正參數(FAC)的調整在波高量值上有顯著的影響,而對於極端波高模擬以美國海軍研究所使用的ST6套組參數(本文簡稱ST6_NRL3)有最佳的計算結果,相對誤差為10%。此外,本文也探討了WRF風場的準確性以及其對於颱風極端波高模擬的敏感度分析,結果顯示,WRF風場與浮標測得最大波高時之風速平均相對誤差為26%,且有高度敏感性,可知風場準確性對於極端波高的模擬結果較模式本身參數設定之影響為大。
During typhoon events, accurate prediction of waves is essential to the ocean engineering design. It can reduce the damage to coastal infrastructure and protect the safety of people's lives. However, due to the complex sea state and air-sea interaction, it is still challenging to improve the prediction accuracy in the simulation of extreme typhoons. In this study, we will find out the appropriate solutions of the errors to improve the accuracy of extreme wave height calculation. The WAVEWATCH III wave model (WW3) was used to calculate the wave in the past 9 typhoon cases which the maximum wave height is larger than 10 meters. The source term packages and parameter settings from various countries (Taiwan, France, and USA) had been discussed to understand the ability of WW3 in these cases. According to the comparison between WW3 results and buoy measured data, it is shown that the three packages (ST2/4/6) of WW3 have good performance in the overall typhoon wave simulation. However, there is an underestimation in extreme wave height simulation, in which the relative error 14% of ST6 simulation results is the smallest. When using the settings suggested by the national operation unit, the results of the overall wave height trend of typhoons show that the adjustment of the wind speed correction parameter (c0) in ST2 and the drag coefficient correction parameter (FAC) in ST6 has the most significant influence on the simulation of the extreme wave height during the typhoon. For extreme wave high simulation, the parameters adjust by United States Naval Research Laboratory in ST6 (this article is referred to as ST6_NRL3) have the best calculation results, the relative error is 10%. Furthermore, the study also discusses the accuracy of wind field provided by WRF (The Weather Research and Forecasting). The average relative error of wind speed when the maximum wave height measured by WRF wind field and buoy is 26%. It shows that the wind field accuracy has a greater impact on the extreme wave height simulation than adjusting WW3 parameters.
[1] 李怡婷,「風浪模式計算最佳化之研究」,國立成功大學水利及海洋工程研究所碩士論文,2005
[2] 林文欽,「WAVEWATCH III海洋波浪模式之參數敏感度分析」,國立成功大學水利及海洋工程研究所碩士論文,2004
[3] Akpınar, A., van Vledder, G. P., Kömürcü, M. İ., and Özger, M. (2012). Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea. Continental Shelf Research, 50, 80-99.
[4] Amrutha, M. M., Kumar, V. S., Sandhya, K. G., Nair, T. B., Rathod, and J. L. (2016). Wave hindcast studies using SWAN nested in WAVEWATCH III-comparison with measured nearshore buoy data off Karwar, eastern Arabian Sea. Ocean Engineering, 119, 114-124.
[5] Ardhuin, F., Chapron, B., and Collard, F. (2009a). Observation of swell dissipation across oceans. Geophysical Research Letters, 36(6).
[6] Ardhuin, F. and Jenkins, A. D. (2006). On the interaction of surface waves and upper ocean turbulence. Journal of physical oceanography, 36(3), 551-557.
[7] Ardhuin, F. and Le Boyer, A. (2006). Numerical modelling of sea states: validation of spectral shapes. Navigation, 54(216), 55-71.
[8] Ardhuin, F., Marié, L., Rascle, N., Forget, P., and Roland, A. (2009b). Observation and estimation of Lagrangian, Stokes, and Eulerian currents induced by wind and waves at the sea surface. Journal of Physical Oceanography, 39(11), 2820-2838.
[9] Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J. F., Magne, R., Roland, A., Westhuysen, A., Queffeulou, P., Lefevre, J., Aouf, L., and Collard, F. (2010). Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. Journal of Physical Oceanography, 40(9), 1917-1941.
[10] Babanin, A. (2009). Breaking of ocean surface waves. Acta Physica Slovaca. Reviews and Tutorials, 59(4), 305-535.
[11] Babanin, A. (2011). Breaking and dissipation of ocean surface waves. Cambridge University Press.
[12] Babanin, A. V. and Young, I. R. (2005). Two-phase behaviour of the spectral dissipation of wind waves.
[13] Babanin, A. V., Banner, M. L., Young, I. R., and Donelan, M. A. (2007). Wave-follower field measurements of the wind-input spectral function. Part III: Parameterization of the wind-input enhancement due to wave breaking. Journal of Physical Oceanography, 37(11), 2764-2775.
[14] Banner, M. L. and Peirson, W. L. (1998). Tangential stress beneath wind-driven air–water interfaces. Journal of Fluid Mechanics, 364, 115-145.
[15] Banner, M. L. and Peirson, W. L. (2007). Wave breaking onset and strength for two-dimensional deep-water wave groups. Journal of Fluid Mechanics, 585, 93-115.
[16] Battjes, J. A. and Janssen, J. P. F. M. (1978). Energy loss and set-up due to breaking of random waves. Coastal Engineering Proceedings, 1(16).
[17] Bi, F., Song, J., Wu, K., and Xu, Y. (2015). Evaluation of the simulation capability of the Wavewatch III model for Pacific Ocean wave. Acta Oceanologica Sinica, 34(9), 43-57.
[18] Bidlot, J., Janssen, P., and Abdalla, S. (2005). A revised formulation for ocean wave dissipation in CY25R1. Internal Memorandum Research Department.
[19] Bouws, E. and Komen, G. J. (1983). On the balance between growth and dissipation in an extreme depth-limited wind-sea in the southern North Sea. Journal of Physical Oceanography, 13(9), 1653-1658.
[20] Campos, R. M., Alves, J. H. G. M., Soares, C. G., Guimaraes, L. G., and Parente, C. E. (2018). Extreme wind-wave modeling and analysis in the south Atlantic ocean. Ocean Modelling, 124, 75-93.
[21] Chalikov, D. (1995). The parameterization of the wave boundary layer. Journal of Physical Oceanography, 25(6), 1333-1349.
[22] Chalikov, D. V. and Belevich, M. Y. (1993). One-dimensional theory of the wave boundary layer. Boundary-Layer Meteorology, 63(1-2), 65-96.
[23] Collard, F., Ardhuin, F., and Chapron, B. (2009). Monitoring and analysis of ocean swell fields from space: New methods for routine observations. Journal of Geophysical Research: Oceans, 114(C7).
[24] de León, S. P., Bettencourt, J., Van Vledder, G. P., Doohan, P., Higgins, C., Soares, C. G., and Dias, F. (2018). Performance of WAVEWATCH-III and SWAN Models in the North Sea. In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering (pp. V11BT12A052-V11BT12A052). American Society of Mechanical Engineers.
[25] Donelan, M. A., Babanin, A. V., Young, I. R., and Banner, M. L. (2006). Wave-follower field measurements of the wind-input spectral function. Part II: Parameterization of the wind input. Journal of physical oceanography, 36(8), 1672-1689.
[26] Dore, B. D. (1978). Some effects of the air-water interface on gravity waves. Geophysical and Astrophysical Fluid Dynamics, 10(1), 215-230.
[27] Eldeberky, Y. (1996). Nonlinear transformation of wave spectra in the nearshore zone (Ph. D. thesis). Netherlands: Delft University of Technology, Department of Civil Engineering.
[28] Eldeberky, Y. and Battjes, J. A. (1996). Spectral modeling of wave breaking: Application to Boussinesq equations. Journal of Geophysical Research: Oceans, 101(C1), 1253-1264.
[29] Fan, Y., Ginis, I., Hara, T., Wright, C. W., and Walsh, E. J. (2009). Numerical simulations and observations of surface wave fields under an extreme tropical cyclone. Journal of Physical Oceanography, 39(9), 2097-2116.
[30] Filipot, J. F., Ardhuin, F., and Babanin, A. V. (2010). A unified deep‐to‐shallow water wave‐breaking probability parameterization. Journal of Geophysical Research: Oceans, 115(C4).
[31] Grant, W. D. and Madsen, O. S. (1979). Combined wave and current interaction with a rough bottom. Journal of Geophysical Research: Oceans, 84(C4), 1797-1808.
[32] Hargreaves, J. C. and Annan, J. D. (1998). Integration of source terms in WAM. In Proceedings 5th International Workshop of Wave Forecasting and Hindcasting, 128-133.
[33] Hargreaves, J. C. and Annan, J. D. (2001). Comments on “Improvement of the short-fetch behavior in the wave ocean model (WAM)”. Journal of Atmospheric and Oceanic Technology, 18(4), 711-715.
[34] Hasselmann, K. (1962). On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. Journal of Fluid Mechanics, 12(4), 481-500.
[35] Hasselmann, K. (1963a). On the non-linear energy transfer in a gravity wave spectrum Part 2. Conservation theorems; wave-particle analogy; irrevesibility. Journal of Fluid Mechanics, 15(2), 273-281.
[36] Hasselmann, K. (1963b). On the non-linear energy transfer in a gravity-wave spectrum. Part 3. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum. Journal of Fluid Mechanics, 15(3), 385-398.
[37] Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W., and Walden., H. (1973). Measurement of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänzungsheft 8-12.
[38] Hasselmann, S., Hasselmann, K., Allender, J. H., and Barnett, T. P. (1985). Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography, 15(11), 1378-1391.
[39] Huang, Y., Weisberg, R. H., Zheng, L., and Zijlema, M. (2013). Gulf of Mexico hurricane wave simulations using SWAN: Bulk formula‐based drag coefficient sensitivity for Hurricane Ike. Journal of Geophysical Research: Oceans, 118(8), 3916-3938.
[40] Hwang, P. A. (2011). A note on the ocean surface roughness spectrum. Journal of Atmospheric and Oceanic Technology, 28(3), 436-443.
[41] Janssen, P. A. (1989). Wave-induced stress and the drag of air flow over sea waves. Journal of Physical Oceanography, 19(6), 745-754.
[42] Janssen, P. A. (1991). Quasi-linear theory of wind-wave generation applied to wave forecasting. Journal of physical oceanography, 21(11), 1631-1642.
[43] Janssen, P. A. (1992). Consequences of the effect of surface gravity waves on the mean air flow. In Breaking Waves (pp. 193-198). Springer, Berlin, Heidelberg.
[44] Jun, K. C., Jeong, W. M., Choi, J. Y., Park, K. S., Jung, K. T., Kim, M. K., CHAE, J. W., and Qiao, F. (2015). Simulation of the extreme waves generated by typhoon Bolaven (1215) in the East China Sea and Yellow Sea. Acta Oceanologica Sinica, 34(12), 19-28.
[45] Kazeminezhad, M. H. and Siadatmousavi, S. M. (2017). Performance evaluation of WAVEWATCH III model in the Persian Gulf using different wind resources. Ocean Dynamics, 67(7), 839-855.
[46] Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P. A. E. M. (1996). Dynamics and modelling of ocean waves. Dynamics and Modelling of Ocean Waves, by GJ Komen and L. Cavaleri and M. Donelan and K. Hasselmann and S. Hasselmann and PAEM Janssen, pp. 554. ISBN 0521577810. Cambridge, UK: Cambridge University Press, August 1996., 554.
[47] Komen, G. J., Hasselmann, K., and Hasselmann, K. (1984). On the existence of a fully developed wind-sea spectrum. Journal of physical oceanography, 14(8), 1271-1285.
[48] Kutupoğlu, V., Çakmak, R. E., Akpınar, A., and van Vledder, G. P. (2018). Setup and evaluation of a SWAN wind wave model for the Sea of Marmara. Ocean Engineering, 165, 450-464.
[49] Langodan, S., Cavaleri, L., Viswanadhapalli, Y., and Hoteit, I. (2014). The Red Sea: a natural laboratory for wind and wave modeling. Journal of Physical Oceanography, 44(12), 3139-3159.
[50] Lee, H. S. (2015). Evaluation of WAVEWATCH III performance with wind input and dissipation source terms using wave buoy measurements for October 2006 along the east Korean coast in the East Sea. Ocean Engineering, 100, 67-82.
[51] Li, J., Chen, Y., Pan, S., Pan, Y., Fang, J., and Sowa, D. M. (2016). Estimation of mean and extreme waves in the East China Seas. Applied Ocean Research, 56, 35-47.
[52] Liu, Q., Babanin, A., Fan, Y., Zieger, S., Guan, C., and Moon, I. J. (2017). Numerical simulations of ocean surface waves under hurricane conditions: Assessment of existing model performance. Ocean Modelling, 118, 73-93.
[53] Mentaschi, L., Besio, G., Cassola, F., and Mazzino, A. (2015). Performance evaluation of Wavewatch III in the Mediterranean Sea. Ocean Modelling, 90, 82-94.
[54] Montoya, R. D., Arias, A. O., Royero, J. O., and Ocampo-Torres, F. J. (2013). A wave parameters and directional spectrum analysis for extreme winds. Ocean Engineering, 67, 100-118.
[55] Pan, S. Q., Fan, Y. M., Chen, J. M., and Kao, C. C. (2016). Optimization of multi-model ensemble forecasting of typhoon waves. Water Science and Engineering, 9(1), 52-57.
[56] Perrie, W., Toulany, B., Roland, A., Dutour‐Sikiric, M., Chen, C., Beardsley, R. C., Qi, J., Hu, Y., Casey, M. P., and Shen, H. (2018). Modeling North Atlantic Nor'easters With Modern Wave Forecast Models. Journal of Geophysical Research: Oceans, 123(1), 533-557.
[57] Phillips, O. M. (1958). The equilibrium range in the spectrum of wind-generated waves. Journal of Fluid Mechanics, 4(4), 426-434.
[58] Phillips, O. M. (1984). On the response of short ocean wave components at a fixed wavenumber to ocean current variations. Journal of Physical Oceanography, 14(9), 1425-1433.
[59] Reul, N., Branger, H., and Giovanangeli, J. P. (1999). Air flow separation over unsteady breaking waves. Physics of Fluids, 11(7), 1959-1961.
[60] Rogers, W. E., Babanin, A. V., and Wang, D. W. (2012). Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: Description and simple calculations. Journal of Atmospheric and Oceanic Technology, 29(9), 1329-1346.
[61] Seemanth, M., Bhowmick, S. A., Kumar, R., and Sharma, R. (2016). Sensitivity analysis of dissipation parameterizations in a third-generation spectral wave model, WAVEWATCH III for Indian Ocean. Ocean Engineering, 124, 252-273.
[62] Snyder, R. L., Dobson, F. W., Elliott, J. A., and Long, R. B. (1981). Array measurements of atmospheric pressure fluctuations above surface gravity waves. Journal of Fluid mechanics, 102, 1-59.
[63] Stansell, P. and MacFarlane, C. (2002). Experimental investigation of wave breaking criteria based on wave phase speeds. Journal of physical oceanography, 32(5), 1269-1283.
[64] Stopa, J. E., Ardhuin, F., Babanin, A., and Zieger, S. (2016). Comparison and validation of physical wave parameterizations in spectral wave models. Ocean Modelling, 103, 2-17.
[65] Tolman, H. L. (1991). A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. Journal of Physical Oceanography, 21(6), 782-797.
[66] Tolman, H. L. (1992). Effects of numerics on the physics in a third-generation wind-wave model. Journal of physical Oceanography, 22(10), 1095-1111.
[67] Tolman, H. L. and Chalikov, D. (1996). Source terms in a third-generation wind wave model. Journal of Physical Oceanography, 26(11), 2497-2518.
[68] Tolman, H. L. (2002). Validation of WAVEWATCH III version 1.15 for a global domain. Tech. Note 213, NOAA/NWS/NCEP/OMB.
[69] Tolman, H. L. (2003). Optimum discrete interaction approximations for wind waves. Part 1: Mapping using inverse modeling. Tech. Note 227, NOAA/NWS/NCEP/MMAB, 57 pp.+ Appendices.
[70] Tsagareli, K. N., Babanin, A. V., Walker, D. J., and Young, I. R. (2010). Numerical investigation of spectral evolution of wind waves. Part I: Wind-input source function. Journal of Physical Oceanography, 40(4), 656-666.
[71] Tulin, M. P. and Landrini, M. (2001). Breaking waves in the ocean and around ships. In Twenty-Third Symposium on Naval HydrodynamicsOffice of Naval ResearchBassin d'Essais des CarenesNational Research Council.
[72] WAMDIG. (1988). The WAM model—A third generation ocean wave prediction model. Journal of Physical Oceanography, 18(12), 1775-1810.
[73] Wang, J., Zhang, J., Yang, J., Bao, W., Wu, G., and Ren, Q. (2017). An evaluation of input/dissipation terms in WAVEWATCH III using in situ and satellite significant wave height data in the South China Sea. Acta Oceanologica Sinica, 36(3), 20-25.
[74] WAVEWATCH III Development Group. (2016). User manual and system documentation of WAVEWATCH III version 5.16., NOAA/NWS/NCEP/MMAB, College Park, MD, USA.
[75] Wu, C. H. and Nepf, H. M. (2002). Breaking criteria and energy losses for three‐dimensional wave breaking. Journal of Geophysical Research: Oceans, 107(C10).
[76] Xu, F., Perrie, W., Toulany, B., and Smith, P. C. (2007). Wind-generated waves in Hurricane Juan. Ocean Modelling, 16(3-4), 188-205.
[77] Young, I. R., Banner, M. L., Donelan, M. A., McCormick, C., Babanin, A. V., Melville, W. K., and Veron, F. (2005). An integrated system for the study of wind-wave source terms in finite-depth water. Journal of Atmospheric and Oceanic Technology, 22(7), 814-831.
[78] Zieger, S., Babanin, A. V., Rogers, W. E., and Young, I. R. (2015). Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Modelling, 96, 2-25