| 研究生: |
王尹男 Wang, Yin-nan |
|---|---|
| 論文名稱: |
奈米碲化鉛之水熱法合成及其火花電漿燒結體性質研究 Spark plasma sintering of PbTe nanoparticles derived from hydrothermal method |
| 指導教授: |
黃啟祥
Huang, Chii-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 火花電漿燒結 、水熱法 、碲化鉛 |
| 外文關鍵詞: | PbTe, spark plasma sintering, hydrothermal |
| 相關次數: | 點閱:54 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
PbTe系列合金為中溫域最著名之熱電材料,為提升PbTe塊材的熱電轉換效率,本研究旨在檢討如何製備出奈米晶粒尺寸之PbTe塊材。研究項目包括: (1) 如何結合化學法及水熱法之優點而合成奈米大小的PbTe粒子,並提高其產粉效率, (2) 探討火花電漿燒結的燒結溫度與持溫時間對燒結體粒徑之影響及其氧化物之生成關係 (3) 探討奈米塊材之微觀結構對載子傳輸之影響。
本研究利用水熱爐的高壓還原特性及化學法的分段化學反應提出二階段水熱法,此法以600 ml的高壓釜,反應物Pb(NO3)2、Te各為0.06 mole時可於110 oC反應1小時而合成出單一相的PbTe奈米粉末,其粒子大小在10~40 nm,每次產量可達20 g。但粉體表面有氧化現象,氧含量約25 at%。合成的粉體經200 oC持溫3分鐘的SPS燒結,可製備出平均粒徑129 nm之緻密燒結體(相對密度 > 95 %);更高的燒結溫度則會使原本附著在粉體表面的非晶質氧化物結晶成PbTeO3而析出於PbTe晶界。而載子在PbTe奈米塊材中的移動是由晶界散射所主導。
PbTe based alloys are one of the best intermediate temperature thermoelectric materials. This research focus on fabricating dense PbTe bulk with nano-sized grains to enhance the thermoelectric conversion efficiency; including three items . (1) Combing the advantages of hydrothermal method and low temperature wet chemical route to synthesize PbTe nanoparticles and to enhance the yield. (2) To investigate the relationship between the microstructures and the sintering parameters (sintering temperature and holding time) of SPS. (3) To investigate the relationship between the microstructure and the electrical properties.
Two steps hydrothermal method was proposed to synthesize PbTe nanoparticles. This method reproducibly synthesizes 10-40 nm nanocrystals at 110 oC for 2 h and has a high yield over 20 g per batch. The result also indicates surface oxidation on the nanocrystals, and the average oxygen content is about 25 at%. Dense PbTe nanocomposites were obtained by spark plasma sintering of as-synthesized nanoparticles at 200 oC for 3 min. The average grain size of this nanocomposite is 129 nm and the relative density is over 95%. The electrical properties are related to the microstructure which suggests that the transport properties are dominated by grain boundary potential barrier scattering.
參考文獻
1. X. Y. Zhao, X. Shi, L. D. Chen, W. Q. Zhang, S. Q. Bai, Y. Z. Pei, X. Y. Li and T. Goto, “Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties,” Appl. Phys. Lett., 89, 092121-1-3 (2006)
2. L. D Hicks. and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Phys. Rev. B, 47, 12, 727~731 (1993)
3. L. D Hicks., T. C. Harman, X Sun. and M. S Dresselhaus., “Experimental Study of the Effect of Quantum-well Structures on the Thermoelectric Figure of Merit,” Phys. Rev. B, Condens. Matter, 53, 16, R10493–R104936 (1996)
4. T. C Harman, P. J. Taylor, D. L. Spears and M. P.Walsh, ”Thermoelectric quantum-dot superlattices with high ZT,” J. Electron. Mater, 29, L1 (2000)
5. R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature, 413, 597 (2001)
6. T. C Harman., M. P. Walsh, B. E Laforge. G. W. and Turner,” Nanostructured thermoelectric materials,” J. Electron. Mater, 34, L19 (2005)
7. K. F. Hsu, S Loo, F Guo, W. Chen, J. S Dyck., C Uher., T Hogan., E. K. Polychroniadis and M. G. Kanatzidis, “Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit,” Science,303, 818 (2004)
8. Martin J., Nolas G. S., Zhang W. and Chen L., “PbTe nanocomposites synthesized from PbTe nanocrystals,” Appl. Phys. Lett., 222112 (2007)
9. Thermoelectrics Handbook :Macro to Nano, edited by D. M.Rowe, Ph. D., D. Sc., Ch3 (2005)
10. C. W Nan. and R .Birringer, “Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model,” Phys. Rev. B, 57, 8264 (1998)
11. Y. Q. Cao, T. J. Zhu1 and X. B. Zhao, “Low thermal conductivity and improved figure of merit in fine-grained binary PbTe thermoelectric alloys,” J. Phys. D: Appl. Phys., 42, 015406 (2009)
12. C. H .Kuo, M. S Jeng., J. R. Ku, S. K Wu., Y. W Chou., and C. H .Hwang, “p-Type PbTe Thermoelectric Bulk Materials with Nanograins Fabricated by Attrition Milling and Spark Plasma Sintering,” J. Electron. Mater., 38, 9, 1956-1961 (2009)
13. J. Martin, Li Wang, Lidong Chen, and G. S. Nolas, “Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites,” Physical review B, 79, 115311 (2009)
14. P. H Joseph., C. M. Thrush, and T. M .Donald, “Thermopower enhancement in lead telluride nanostructures,” Physical review B, 70, 115334 (2004)
15. D. M. Rowe, “CRC Handbook of Thermoelectrics,” (Boca Raton, 1994) Ch7
16. K. Kishimoto, M. Tsukamoto, and T Koyanagi, “Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by sputtering” J. Appl. Phys, 92, 5331 (2002)
17. G. S. Nolas, J. Sharp and H. J. Goldsmith, “Thermoelectrics” Ch2, p.39
18. K. Kishimoto and T. Koyanagi, “Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties,” J. Appl. Phys., 92, 5 (2002)
19. Z. H. Dughaish, “Lead telluride as a thermoelectric material for thermoelectric power generation ,” Physica B, 322, 205–223 (2002)
20. L. J. van der Pauw, “A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shap,” Philips technical review, 20, 220 (1958)
21. http://hyperphysics.phy-astr.gsu.edu/HBASE/hph.html
22. Z. H. Dughaish, “Effect of temperature variation on the transport properties of fine-grained heavily doped n-type PbTe,” Physica B, 299, 94-100 (2001)
23. K. F. Cai, X. R. He, M. Avdeev, D. H. Yu, J. L. Cui and H. Li, “Preparation and thermoelectric properties of AgPbmSbSem+2 materials,” J. Solid State Chem., 181, 1434-1438 (2008)
24. Y. Q. Cao, T. J. Zhu1 and X. B. Zhao, “Low thermal conductivity and improved figure of merit in fine-grained binary PbTe thermoelectric alloys,” J. Phys. D: Appl. Phys., 42, 015406 (2009)
25. C. Wang, G. Zhang, S. Fan and Y. Li, “Hydrothermal synthesis of PbSe, PbTe semiconductor nanocrystals,”J. Phys. Chem. Solids, 62, 1957 (2001)
26. W. Zhang, L. Zhang, Y. Cheng, Z. Hui, X. Zhang, Y. Xie and Y. Qian, ”Synthesis of nanocrystalline lead chalcogenides PbE (E = S, Se, or Te) from alkaline aqueous solutions,” Mater. Res. Bull., 35, 2009-2015 (2000)
27. B. Wan, C. Hu, H. Liu, Y. Xiong, F. Li, Yi Xi and X. He, “Growth of PbTe nanorods controlled by polymerized tellurium anions and metal(II) amides via composite-hydroxide-mediated approach,” Mater. Res. Bull., Article in press (2009)
28. Y. Ni, B. Qiu, J. Hong, L. Zhang and X. Wei, “Hydrothermal synthesis, characterization, and influence factors of PbTe nanocrystals,” Mater. Res. Bull., Article in press (2007)
29. T. J. Zhu, Y. Q. Liu and X. B. Zhao, “Synthesis of PbTe thermoelectric materials byalkaline reducing chemical routes,” Mater. Res. Bull., 43, 2850-2854 (2008)
30. J. L. Cui, “Solvothermal route to the preparation of (PbTe)1-x(SnTe)x (x=0.5)with nanocrystals,” Mater. Lett., 58, 3222- 3225 (2004)
31. K. F. Cai, X. R. He, ”Hydrothermal synthesis and characterization of silver and antimony co-doped PbSe nanopowders,” Mater. Lett., 60, 2461-2464 (2006)
32. 王亞帆,“能障散射效應對Bi0.5Sb1.5Te3薄膜熱電性質影響之研究,” 國立清華大學,碩士論文 (2007)
33. 鄢永高, “AgPb<,m>SbTe<,2+m>類化合物的制備與熱電性能,” 武漢理工大學, 博士論文 (2007)
34. D. Stavrakieva, Y. Ivanova, and J. Ppyrov, “On the composition of the crystal phases in the PbO-TeO2 system,” J. Mater. Sci., 23, 1871-1876 (1988)