| 研究生: |
王冠益 Wang, Kuan-Yi |
|---|---|
| 論文名稱: |
摩星石砧:一種新型的高溫高壓砧 Moissanite Anvil Cell :A New High T/P Cell |
| 指導教授: |
余樹楨
Yu, Shu-Cheng 黃怡禎 Hung, Eugene |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 高溫高壓砧 、摩星石砧 、摩星石 |
| 外文關鍵詞: | moissanite, moissanite anvil cell, high temperature-high pressure cell |
| 相關次數: | 點閱:81 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摩星石(Moissanite)為六方晶系的碳化矽(SiC),其硬度(H=9.5)僅次於鑽石,且擁有極佳的導熱性,適合當作高壓砧的砧面。
摩星石高壓砧(Moissanite Anvil Cell, MAC)可以達到的壓力極值為50GPa,配合靜態加溫法,其溫度可達1500℃以上。由於使用鑽石砧無法精確地量測到鑽石振動模在高溫高壓下之變化情形,因此我們利用MAC,分別量測溫度與壓力對鑽石拉曼振動模頻率之影響。此外我們也用鑽石高壓砧進行摩星石在高溫高壓環境之下其拉曼振動模頻率之變化。將實驗結果加以計算,求出Grüneisen parameters並比較之。
鑽石在常溫常壓下之拉曼振動模為1333cm-1,在溫度與壓力分別達1400℃與8GPa之狀態下,鑽石的拉曼振動模波數(wavenumber)隨溫度向低頻移動,拉曼峰由1333㎝-1遞減至1296㎝-1,減少近37 cm-1;而隨壓力向高頻移動,壓力從0GPa到8GPa,鑽石的拉曼峰從1332㎝-1增加到1359㎝-1,上升了約26 cm-1。根據 計算Gruneisen parameters ( ),所得的結果為1.08。
摩星石有三個較強之拉曼峰,位置約在766cm-1、788cm-1和969cm-1,當溫度上升至900℃,三個峰值分別下降至約745cm-1、765cm-1及938cm-1,總共分別下降約20、22與27 cm-1;而當壓力上升至19GPa時,摩星石的拉曼峰值從766cm-1、788cm-1和969cm-1升為832cm-1、845cm-1和1044 cm-1,因此當壓力從0至19GPa,摩星石的拉曼峰值上升分別約66、57和75 cm-1。 ,所以 分別為1.02、0.85和0.91。
所以如將MAC加以改良,可望同時使其最高壓力與溫度達到10GPa及1500℃,此條件相當於地球內部過渡帶之環境。
Hexagonal form of SiC, moissanite, is a strong material with superb heat conductivity that is suitable for serving as anvils in the gem anvil cells. The moissanite anvil cell (MAC) has the capability of generating pressure up to 50 GPa and temperature up to 1500℃, separately. It is feasible that simultaneous high pressure and temperature can be obtained at 10 GPa at maximum temperature of 1500℃ in the MAC. In this experiment, the frequency shifts of diamond Raman mode with temperature and pressure has been conducted in the MAC up to 1200K and 10 GPa, respectively. Potential applications of MAC to the investigation of the Earth's transition zone are currently undergoing.
英文部份
1.Aleksandrov V., Goncharov A. F., Zisman A. N. and Stishov S. M. Diamond at high pressures: Raman scattering of light, equation of state, and high pressure scale. Sov. Phys. JETP, 66, 384-390, 1987.
2.Bassett W. A., Shen A. H., Bucknum M. and Chou I-Ming. A new diamond anvil cell for hydrothermal studies to 2.5 Gpa and from –190 to 1200℃. Rev. Sci. Instrum. 64, 2340-2345. 1993.
3.Boppart H., Straaten J. van and Silvera Isaac F. Raman spectra of diamond at high pressures. Phys. Rev. 32, 1423-1425, 1985.
4.Chen K. H., Lai Y. L., Chen L. C., Wu J. Y. and Kao F. J. High temperature Raman study in CVD diamond. Thin Solid Films. 270, 143-147, 1995.
5.Chai M. and Michael Brown J. Effects of static non-hydrostatic stress on the R lines of ruby single crystals. Geophys. Res. Lett. 23, 3539-3542. 1996.
6.Fadini A. and Schnepel F. M. Vibrational spectroscopy-methods and applications. Elhs Horwood Limited, England, 205. 1989.
7.Hanfland M. and Syassen K. A Raman study of diamond anvils under stress. J. Appl. Phys. 57, 2752-2756. 1985.
8.Hanfland M., Syassen K., Fahy S., Louie Steven G. and Cohen Marvin L. Pressure dependence of the first-order Raman mode in diamond. Phys. Rev. B. 31, 6896-6899. 1985.
9.Hemley R. J. ULTRAHIGH-PRESSURE MINERALOGY: PHYSICS AND CHEMISTRY OF THE EARTH’S DEEP INTERIOR. REVIEWS IN MINERALOGY. Mineralogical Society of America. Washington, D.C. pp.525-590. 1998.
10.Huang E. Pressure measurements in diamond anvil cell by ruby fluorescence method and some application. J. Geol. Soc. China. 35,2, 135-150. 1992.
11.Mao H. K. and Bell P. M. Design of a diamond-windowed, high-pressure cell for hydrostatic pressures in the range 1 bar to 0.5 Mbar. Carnegie Inst. Washington Yearb. 74, 402-405. 1975.
12.Mao H. K. and Bell P. M. High-pressure physics: The 1 Mbar mark on the ruby R1 static pressure scale. Science 191, 851-852. 1976.
13.Mathez E. A., Fogel R. A., Hutcheon I. D. and Marshintsev V. K. Carbon isotopic composition and origin of SiC from kimberlites of Yakutia, Russia. Geochimica et Cosmochimica Acta. 59, 4, 781-791.1995.
14.Muinov M., Kanda H. and Stishov S. M. Raman scattering in diamond at high pressure: Isotopic effects. Phys. Rev. B. 50, 13860-13862. 1994.
15.Poirier J. P. INTRODUCTION TO THE PHYSICS OF THE EARTH’S INTERIOR. Cambridge University Press. New York. pp.41-50. 1991.
16.Schiferl D., Nicol M., Zaug J. M., Sharma S. K., Cooney T. F., Wang S. Y., Anthony T. R. and Fleischer J. F. The diamond 13C/12C isotope Raman pressure sensor system for high-temperature/pressure diamond-anvil cells with reactive samples. J. Appl. Phys. 82, 3256-3265. 1997.
17.Sharma S. K., Mao H. K. and Xu J. A. Measurement of stress in diamond anvils with Micro-Raman spectroscopy. J. Raman Spectroscopy. 16, 350-352. 1985.
18.Xu J. A. and Mao H. K. Moissanite: A new window for ultrahigh pressure research. Science 290, 783-785. 2000.
19.Xu J. A., Mao H. K. and Hemley R., Gem Anvil Cell: High-Pressure
Behavior of Diamond and Related Materials, AIRAPT-18 symposium volume. 2001.
20.Xu J. A., Yen J., Wang Y. and Huang E. Ultrahigh pressures in gem anvil cells. High Pressure Res. 15, 127-134. 1996.
21.Zemansky M. W. and Dittman R. H. HEAT AND THERMODYNAMICS. McGRAW-HILL BOOK COMPANY. 1981
22.Zouboulis E. S. and Grimsditch M. Raman scattering in diamond up to 1900 K. Phys. Rev. B. 43,12490-12493. 1991.
中文部份
1.余樹楨.晶體之結構與性質. 渤海堂.民 76.
2.曾志雄.鑽石及其模仿品(摩星品Moissanite)之鑑定漫談.工業簡訊.頁 146-163.民 88.
3.黃忠良.天然鑽集合成鑽之物性. 復漢出版社.民 84.
4.黃怡禎譯.礦物學.地球科學文教基金會.民 89.
5.洪連輝,劉立基和魏榮君.固態物理學導論.高立圖書有限公司.民 86