簡易檢索 / 詳目顯示

研究生: 郭栢瑞
Kuo, Po-Jui
論文名稱: 磁控濺鍍成長氧化錫鋅薄膜之研究及其應用
Investigation of ZTO thin film by RF co-sputter and it’s application
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 96
中文關鍵詞: 氧化鋅錫薄膜電晶體生物感測器
外文關鍵詞: ZTO, TFTs, biosensor
相關次數: 點閱:84下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,非晶型氧化鋅錫ZTO薄膜沉積自不同的條件。根據不同的沉積條件,我們將這些薄膜應用於薄電晶體(TFTs),pH傳感器和葡萄糖生物傳感器,然後進行分析並討論他們的特性。
    首先我們應用非晶氧化鋅錫薄膜做為主動層與二氧化矽做為閘極介電層來製作薄膜電晶體。經由改變氧氣流量,我們得到最佳氧氣的比例為百分之四。接著經由製程後退火,有效減少表面缺陷密度,使得特性變更好。最後為了最佳化氧化鋅錫薄膜電晶體,我們改變氧化錫及氧化鋅的製程功率進而改變錫的含量。此外,我們指出元素含量組成對元件電特性之影響,然後改善電特性的確切來源,並最佳化鋅錫薄膜中鋅和錫組成比例,以改善元件特性。從我們製做出的最佳氧化鋅錫薄膜電晶體可以得到場效遷移率18cm^2/Vs,臨界電壓0.5 V,次臨界擺幅0.227 V,電流開關比10^5。
    在實驗第二部分,我們將氧化鋅錫薄膜用於pH傳感器。其量測特性取決於在不同pH下的循環伏安圖,而從我們的實驗可以發現氧化鋅錫薄膜對pH感測有良好的線性關係,從線性關係圖中我們計算出氧化鋅錫pH傳感器的靈敏度為-0.0689 μA/pH。
    在實驗最後一部分,我們將氧化鋅錫薄膜應用於葡萄糖生醫感測器。雖然量測靈敏度並不好,但氧化鋅錫薄膜在葡萄糖感測上表現出良好的線性關係。其靈敏度不佳的原因可能是由於葡萄糖氧化酶和氧化鋅錫電極相距太遠,導致電荷沒有效傳輸。然而氧化鋅錫仍然是很有潛能的材料在應用於生醫感測上。

    In this dissertation, amorphous zinc tin oxide ZTO thin films were fabricated at different kinds of conditions. According to the different deposited condition, we applied these thin films in thin film transistors (TFTs), pH sensors and glucose biosensors, and then analyzed and discuss their performance.
    First, we apply ZTO thin film as channel layer to the fabrication of TFT with SiO2 gate dielectric. By varying the flow rate of oxygen, we found the optimal oxygen ratio was 4%. And then, by post-annealing, the interface traps density was reduced significantly, and exhibited better characteristic. Finally, to optimize the ZTO TFTs, we varied the SnO2and ZnO power to change the Sn content. Additionally, we report the effect of cation composition on the device performance of ZTO TFTs was investigated. Then, the exact origin of the improvement of electrical characteristics, and optimize the ratio of the Zn, and Sn fractions in ZTO thin films, in order to improve the performance of a device. From the best ZTO TFT we fabricated, it was found that the field-effect mobility was 18 cm^2/Vs, threshold voltage of 0.5V, subthreshold swing of 0.227V/decade and Ion/Ioff of 10^5.
    In the second part of our experiment, we fabricated ZTO thin films for pH sensors. The sensing performance was determined by cyclic voltammetry curve at different pH value. It could be found that the ZTO pH sensor exhibited good linearship with pH value. The pH sensitivity calculated from the linear relation between the cyclic voltammetry current and the pH value was -0.0689 μA/pH.
    The last part of our experiment, we used the zinc tin oxide thin films as glucose biosensors. Although the measurement sensitivity was not good, ZTO thin films exhibited good linear relationship with glucose detection. The poor sensitivity could be attributed that the far distance between GOD and ZTO electrode, the charge carriers could not transfer availably. However, ZTO was still a potential material for biosensing application.

    摘要 I Abstract III Contents VI Table Captions IX Figure Captions X Chapter 1. Introduction 1 1.1 Background and Motivation 1 1.2 Background of amorphous oxide semiconductor 3 1.3 Amorphous ZnO-based oxide semiconductor 4 1.3.1 Electronic structure of AOS 4 1.3.2 ZnO-based TCO thin films 5 1.4 Organization of dissertation 6 Reference 9 Chapter 2. Fabrication System and Important Parameters 15 2.1 Fabrication System 15 2.1.1 RF Sputtering System 15 2.1.2 Hall Measurement System 17 2.1.3 Energy-dispersive X-ray spectroscopy (EDS) 18 2.1.4 X-ray Diffraction Analysis (XRD) 19 2.1.5 Measurement Systems 20 2.2 Important Parameters 20 2.2.1 Field-Effect Mobility 20 2.2.2 Threshold Voltage (VT) 21 2.2.3 On/off current Ratio (Ion/off) 21 2.2.4 Subthreshold Swing (S.S) 22 Reference 27 Chapter 3. ZTO films for thin film transistors 28 3.1 Introduction 28 3.2 Fabrication of ZTO TFTs with SiO2 dielectric layers 30 3.3 The parameter optimized of ZTO thin film transistors 31 3.3.1 Vary oxygen flow rate. 31 3.3.2 Post-deposition annealing of ZTO thin films 33 3.3.3 Vary SnO2 power 34 3.3.4 Vary ZnO power 37 3.4 Investigate the reliability and photoelectric characteristics 38 Reference 60 Chapter 4. ZTO thin films for pH biosensor 62 4.1 Introduction 62 4.2 Measurement method 62 4.3 Fabricate the ZTO thin film pH sensor 65 4.3.1 Electrodes fabrication and measurement system 65 4.3.2 Sensing behavior of ZTO thin film 66 Reference 78 Chapter 5. ZTO thin films for glucose biosensor. 81 5.1 Introduction 81 5.2 Measurement method 82 5.3 Fabricate the ZTO thin film glucose sensor 83 5.3.1 Electrodes fabrication and measurement system. 83 5.3.2 Sensing behavior of ZTO glucose sensor. 84 Reference 89 Chapter 6. Conclusion and future work 91 6.1 Conclusion 91 6.2 Future work 93 Reference 95

    Chapter 1.
    [1] T. Minami, “Transparent and conductive multicomponent oxide films prepared by magnetron sputtering,” Journal of Vacuum Science & Technology A, Vol. 17, pp. 1765-1772, 1999.
    [2] T. Minami, H. Sato and H. Nanto, “Group Ⅲ Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering,” Japanese Journal of Applied Physics, vol. 24, pp. L781-L784, 1985.
    [3] J. H. Park, K. J. Ahn, K. I.Park, S. I. Na and H. K. Kim, “An Al-doped ZnO electrode grown by highly efficient cylindrical rotating magnetron sputtering for low cost organic photovoltaics ,” Journal of Physics D: Applied Physics, Vol. 43, pp. 115101-115107, 2010.
    [4] H. Enoki, T. Nakayama, J. Echigoya, “The Electrical and Optical Properties of t he ZnO2SnO2 Thin Films Prepared by RF Mag2 net ron Sputtering,” Physica Status Solid A, vol. A129 . pp. 181-191, 1992.
    [5] H. Un'no, N. Hikuma, T. Omata, N. Ueda, T. Hashimoto and H. Kawazoe, “Preparation of MgIn2O4 thin films on glass substrate by RF-sputtering”, Japanese Journal of Applied Physics, vol. 32, pp. L1260-1262, 1993.
    [6] T. Minami, H. Sonohara, T. Kakumu, and S. Takata, “Highly transparent and conductive Zn2In2O5 thin films prepared by rf magnetron sputtering,” Japanese Journal of Applied Physics, vol.34, pp. L971-974, 1995.
    [7] T. Minami, Y. Takeda, S. Takata, T. Kakumu, “Preparation of transparent conducting In4Sn3O12 thin films by DC magnetron sputtering,” Thin Solid Films, vol. 13, pp. 308-309, 1997.
    [8] T. Minami, “Present Status of Transparent Conducting Oxide Thin-Film Development for Indium-Tin-Oxide (ITO) Substitutes”, Thin Solid Films, Vol. 516, pp. 5822-5828, 2008.
    [9] Y. Shigesato, D. C. Paine, and T. E. Haynes: Adv. Mater. (Weinheim, Ger.) 4, pp. 503,1994.
    [10] J. Cui, A. Wang, N. L. Edleman, J. Ni, P. Lee, N. R. Armstrong, and T. Marks: Adv. Mater. (Weinheim, Ger.) 13, pp. 1476, 2001.
    [11] Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Applied Physics Letters, vol.68, p.2699-2701, 1996.
    [12] D. H Kim, M. R. Park, H. J. Lee and G. H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering”, Applied Surface Science, vol.253, pp.409-411, 2006.
    [13] H. K. Kim, J. H. Bae, J. M. Moon, S. W. Kim, S. W. Jeong, D. G. Kim, and J. W. Kang, “Characteristics of Amorphous Indium Zinc Oxide Anode Films on Polycarbonate Substrate for Flexible Organic Light Emitting Diode,” Solid State Phenomena, vol. 399, pp. 124-126, 2007.
    [14] J. H. Bae, J. M. Moon, J. W. Kang, H. D. Park, J. J. Kim, W. J. Cho, and H. K. Kim, “Transparent, Low Resistance, and Flexible Amorphous ZnO-Doped In2O3 Anode Grown on a PES Substrate,” Journal of The Electrochemical Society, vol. 154, pp. J81-J85, 2007.
    [15] C. W. Ow-Yang, H. Y. Yeom, D. C. Paine, ”Fabrication of transparent conducting amorphous Zn-Sn-In-O thin films by direct current magnetron sputtering,” Thin Solid Films, vol. 516, pp. 3105-3111, 2008.
    [16] D. S. Liu, C. S. Sheu, C. T. Lee, and C. H. Lin, “Thermal Stability of Indium Tin Oxide Thin Films Co-sputtered with Zinc Oxide,” Thin Solid Films, vol. 516, pp.3196-3203, 2008.
    [17] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, pp. 1269-1271, 2003.
    [18] N. C. Su, S. J. Wang, and A. Chin, “High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric,” IEEE Elec. Dev. Lett., vol. 30, No. 12, 2009.
    [19] W. C. Shin, H. Moon, S. Yoo, Y. X. Li, and B. J. Cho, “Low-voltage high-performance pentacene thin-film transistors with ultrathin PVP/high-κ HfLaO hybrid gate dielectric,” IEEE Elec. Dev. Lett., vol. 30, pp. 1308-1310, 2010.
    [20] D. A. Mourey, D. A. Zhao, and T. N. Jackson, “Selfaligned-gate ZnO TFT circuits,” IEEE Electron Dev. Lett., vol. 31, pp. 326-328, 2010.
    [21] H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “Amorphous oxide channel TFTs,” Thin Solid Films, vol. 516, pp. 1516–1522, 2008.
    [22] K. B. Park, J. B. Seon, G. H. Kim, M. Yang, B. Koo, H. J. Kim, M. K. Ryu, and S. Y. Lee, “High Electrical Performance of Wet-Processed Indium Zinc Oxide Thin-Film Transistors,” IEEE Elec. Dev. Lett., vol. 31, pp. 311-313, 2010.
    [23] M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, “Thin-filmtransistors with transparent amorphous zinc indium tin oxide channel layer,” J. Phys. D: Appl. Phys., vol. 40, pp. 1335–1338, 2007.
    [24] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-kappa gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, pp. 5243-7275, 2001.
    [25] K. Nomura, A. Takag, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors,” Japanese Journal of Applied Physics, Vol. 45, pp. 4303–4308, 2006.
    [26] H. Hosono, N. Kikuchi, N. Ueda and H. Kawazoe, “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples.” Journal of Non-Crystalline Solids, vol.198–200, pp. 165–169, 1996.
    [27] M. Orita, H. Ohta and M. Hirano, “Amorphous transparent conductive oxide”, Philosophical Magazine, vol.81, pp. 501-515, 2001.
    [28] N. F. Mott, “Silicon dioxide and the chalcogenide semiconductors; similarities and differences.” Advances in Physics, vol. 26, pp. 363–391, 1977.
    [29] M. Orita and M. Hirano, “Electronic structure and transport properties in the transparent amorphous oxide semiconductor 2CdO•GeO2.” Physical Review B, vol. 66, 35203, 2002.
    [30] O. K.Varghese, M. Paulose, C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nature Nanotechnology, vol. 4, 592-597, 2009.
    [31] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, “Nanowire dye-sensitized solar cells,” Nature Materials , vol. 4, pp. 455-459, 2005.
    [32] Chopra K. L., Major S. and Pandya D. K., “Transparent conductors—A status review,” Thin Solid Films, vol. 102,pp. 1-46, 1983.
    [33] B.Y. Oh, M. C. Jeong, D. S. Kim, W. Lee, J. M. Myoung, “Post-annealing of Al-doped ZnO films in hydrogen atmosphere,” Journal of Crystal Growth, vol.281, pp. 475–480, 2005.
    [34] K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo and S. Niki, “ ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications,” Thin Solid Films, vol.431-432, pp. 369-372 ,2003.
    [35] M.F.A.M. van Hest, M.S. Dabney, J.D. Perkins, D.S. Ginley, and M.P. Taylor, “Titanium-doped indium oxide: A high-mobility transparent conductor,” Applied Physics Letters, vol. 87, pp. 032111, 2005.
    [36] H. M. Ali, H. A. Mohamed, and S. H. Mohamed, Eur, “Enhancement of the optical and electrical properties of ITO thin films deposited by electron beam evaporation technique,” Journal of Applied Physics, vol. 31, pp. 87-93, 2005.
    [37] H. Yue1, A. Wu, J. Hu, X. Zhang, T. Li, “Relationship between structure and functional properties of the ZnO:Al thin films,” Materials Science Forum, Vols. 675-677, pp 1275-1278, 2011.
    [38] S. S. Lin, J. L. Huang, P. Sajgalik, “The properties of heavily Al-doped ZnO films before and after annealing in the different atmosphere,” Surface and Coatings Technology, vol.185, pp. 254–263, 2000.
    [39] J. H. Lee, S. Y. Lee, B. O. Park, “Fabrication and characteristics of transparent conducting In2O3–ZnO thin films by ultrasonic spray pyrolysis,” Materials Science and Engineering B, vol. 127, pp. 267–271, 2006.
    [40] R. AlAsmar, S. Juillaguet, M. Ramonda, A. Giani, P. Combette, A. Khoury, A. Foucaran, “Fabrication and characterization of high quality undoped and Ga2O3-doped ZnO thin films by reactive electron beam co-evaporation technique,” Journal of Crystal Growth, vol. 275, pp. 512–520, 2005.
    [41] Y. Zhang, J. He, Z. Ye, L. Zhou, J. Huang, L. Zhu, B. Zhao, “Structural and photoluminescence properties of Zn0.8Mg0.2O thin films grown on Si substrate by pulsed laser deposition,” Thin Solid Films, vol. 458 ,pp. 161–164, 2004.
    [42] S. T. Shishiyanu, Teodor S. Shishiyanu, Oleg I. Lupan, “Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor,” Sensors and Actuators B, vol. 107, pp. 379–386, 2005.
    [43] B. Y. Oh, M. C. Jeong, W. Lee, and J. M. Myoung, ‘‘Properties of Transparent Conductive ZnO Al Films Prepared by Co-Sputtering,’’ Journal of Crystal Growth, vol. 274, pp. 453–457, 2005.

    Chapter 2.
    [1] J. L. Vossen and W. Kern, Thin Flim Processes, Academic Press, New York, pp. 131 (1978).
    [2] C. Y. Chang and S. M. Sze, “ULSI Technology”, McGraw-Hill, New York, pp. 380 (1996).
    [3] S. I. Shah, Handbook of Thin Film Process Technology, Institute of Physics Pub, Bristol, UK, pp. A3.0:1 (1995).
    [4] Joseph Goldstein (2003). Scanning Electron Microscopy and X-Ray Microanalysis
    [5] B.D. Cullity, Elements of X-ray diffraction, 2nd ed, Addison Wesley,
    Canada, (1978).
    [6] Donald A. Neamen, Semiconductor physics and devices: basic principles-3rd ed., McGraw-Hill, New York, (2003)

    Chapter 3.
    [1] M. W. J. Prins, K. O. Grosse-Holz, G. M¨uller, J. F. M. Cillessen, J. B. Giesbers, R. P. Weening, and R. M. Wolf, Appl. Phys. Lett. 68, 3650 (1996).
    [2] A. Ennaoui, M. Weber, R. Scheer, H.J. Lewerenz, Sol. Energy Mater. Sol. Cells. 54, 277 (1998).
    [3] Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett. 86, 12, 123117-1–123117-3 (2005).
    [4] M. Delvaux, and S. D. Champagne, Biosens. Bioelectron. 8, 943–951 (2003).
    [5] X. L. Zhu, I. Yuri, X. Gan, I. Suzuki, and G. X. Li, Biosens. Bioelectron. 22, 1600–1604 (2007).
    [6] F. F. Zhang, X. L. Wang, S. Y. Ai, Z. D. Sun, Q. Wan, Z. Q. Zhu, Y. Z. Xian, L. T. Jin, K. Yamamoto, Anal. Chim. Acta 519, 155–160 (2004).
    [7] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003).
    [8] R. L. Hoffman, B. J. Norris, and J. F. Wager, Appl. Phys. Lett. 82, 733 (2003).
    [9] P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, Appl. Phys. Lett. 82, 1117 (2003).
    [10] R. E. Presley, C. L. Munsee, C. H. Park, D. Hong, J. F. Wager and D. Keszler, J. Phys. D: Appl. Phys. 37, 2810 (2004).
    [11] E. M .C. Fortunato, P. M. C. Barquinha, A. C. M. B. G Pimentel, A. M. F Gonc¸alves, A. J. S. Marques, L. M. N. Pereira, and R. F. P. Martins Adv. Mater. 17, 590 (2005).
    [12] H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, J. Non-Cryst. Solids 165, 198–200 (1996).
    [13] H. Hosono, M. Yasukawa, and H. Kawazoe, J. Non-Cryst. Solids 203, 334 (1996).
    [14] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
    [15] B. Yaglioglu, H.Y. Yeon, R. Beresford, and D.C. Paine, Appl. Phys. Lett. 89, 062103 (2006).
    [16] M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, J. Phys. D, 40, 1335 (2007).
    [17] H.Q. Chiang, J.F. Wager, R.L. Hoffman, J. Jeong, and D.A. Keszler Appl. Phys. Lett. 86, 013503 (2005).
    [18] K. J. Saji, M. K. Jayaraj, K. Nomura, T. Kamiya, and H. Hosono, “Optical and Carrier Transport Properties of Cosputtered Zn–In–Sn–O Films and Their Applications to TFTs,” J. Electrochem. Soc., vol. 155 no. 6, pp. H390-H395, 2008.
    [19] A. Bougrine, M. Addou, A. Kachouane, J.C. Bérnède, M. Morsli,“Effect of tin incorporation on physicochemical properties of ZnO films prepared by spray pyrolysis” Materials Chemistry and Physics 91 (2005) 247–252
    [20] G. E. Totten, S. R. Westbrook, and R. J. Shah, Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing, 1st ed. West Conshohocken, PA: ASTM International (2003).

    Chapter 4.
    [1] Chi, L.L.; Chou, J.C.; Chung, W.Y.; Sun, T.P.; Hsiung, S.K. Study on extended gate field effect transistor with tin oxide sensing membrane. Mater. Chem. Phys. 2000, 63, 19-23.
    [2] Kang, B.S.; Wang, H.T.; Ren, F.; Pearton, S.J.; Morey, T.E.; Dennis, D.M.; Johnson, J.W.; Rajagopal, P.; Roberts, J.C.; Piner, E.L.; Linthicum, K.J. Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 2007, 91, 252103:1-252103:3.
    [3] Muhammad, S.; Ali, U.; Nur, O.; Willander, M.; Danielsson, B. Glucose detection with a commercial MOSFET using a ZnO nanowires extended gate. IEEE Trans. Nanotechnol. 2009, 8, 678-683.
    [4] X.L. Zhu, I. Yuri, X. Gan, I. Suzuki, G.X. Li, Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation, Biosens. Bioelectron. 22 (2007)1600–1604.
    [5] F.F. Zhang, X.L. Wang, S.Y. Ai, Z.D. Sun, Q. Wan, Z.Q. Zhu, Y.Z. Xian, L.T. Jin, K.Yamamoto, Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor, Anal. Chim. Acta 519 (2004) 155–160.
    [6] S.P. Singh, S.K. Arya, P. Pandey, B.D. Malhotra, S. Saha, K. Sreenivas, V. Gupta,Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film,Appl. Phys. Lett. 91 (2007) 63901–63903.
    [7] W.H. Hu, Y.S. Liu, Z.H. Zhu, H.B. Yang, C.M. Li, Randomly oriented ZnO nanorods as advanced substrate for high-performance protein microarrays, ACS Appl.Mater. Interfaces 2 (2010) 1569–1572.
    [8] J.X. Wang, X.W. Sun, A. Wei, Y. Lei, X.P. Cai, C.M. Li, Z.L. Dong, Zinc oxide nanocomb biosensor for glucose detection, Appl. Phys. Lett. 88 (2006)233106–233108.
    [9] A. Umar, M.M. Rahman, S.H. Kim, Y.B. Hahn, ZnO nanonails: synthesis and theirapplication as glucose biosensor, J. Nanosci. Nanotechnol. 8 (2008) 3216–3221.
    [10] A. Wei, X.W. Sun, J.X. Wang, Y. Lei, X.P. Cai, C.M. Li, Z.L. Dong, W. Huang, Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition, Appl. Phys. Lett. 89 (2006) 123902–123904.
    [11] J.F. Zang, C.M. Li, X.Q. Cui, J.X. Wang, X.W. Sun, H. Dong, C.Q. Sun, Tailoring zinc oxide nanowires for high performance amperometric glucose sensor, Electro analysis 19 (2007) 1008–1014.
    [12] Bard, Allen J.; Larry R. Faulkner (2000-12-18). Electrochemical Methods: Fundamentals and Applications (2 ed.). Wiley.
    [13] Nicholson, R. S.; Irving. Shain (1964-04-01). "Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems.". Analytical Chemistry 36 (4): 706–723.
    [14] Heinze, Jurgen (1984). "Cyclic Voltammetry-"Electrochemical Spectroscopy". New Analytical Methods (25)". Angewandte Chemie International Edition in English 23 (11): 831–847.
    [15] Bard, A.J.; Faulkner, L.R. Electrochemical Methods, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2001.
    [16] Zoski, C.G. Handbook of Electrochemistry, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 329-390.

    Chapter 5.
    [1] M.H. Asif, S.M. Ali, O. Nur, M. Willander, C. Brnnmark, P. Strlfors, U.H. Englund,Functionalised ZnO-nanorod-based selective electrochemical sensor for intra-cellular glucose, Biosens. Bioelectron. 25 (2010) 2205–2211.
    [2] B. Fang, A.X. Gu, G.F. Wang, W. Wang, Y.H. Feng, C.H. Zhang, X.J. Zhang, Silver oxide nanowalls grown on Cu substrate as an enzymeless glucose sensor, ACS Appl. Mater. Interfaces 12 (2009) 2829–2834.
    [3] N.A. Rakow, K.S. Suslick, A colorimetric sensor array for odour visualization,Nature 406 (2000) 710–714.
    [4] R.W.Keay, C.J. McNeil, Separation-free electrochemical immunosensor for rapid determination of atrazine, Biosens. Bioelectron. 13 (1998) 963–970.
    [5] D. Lee, J. Lee, J. Kim, H.B. Na, B. Kim, C.H. Shin, J.H. Kwak, A. Dohnalkova, J.W.Grate, T. Hyeon, H.S. Kim, Simple fabrication of a highly sensitive and fast glucose biosensor using enzymes immobilized in mesocellular carbon foam, Adv.Mater. 17 (2005) 2828–2833.
    [6] X.L. Luo, J.J. Xu, Y. Du, H.Y. Chen, A glucose biosensor based on chitosan–glucose oxidase–gold nanoparticles biocomposite formed by one-step electrodeposition, Anal. Biochem. 334 (2004) 284–289.
    [7] W. Zhao, J.J. Xu, C.G. Shi, H.Y. Chen, Multilayer membranes via layer-by-layer deposition of organic polymer protected Prussian blue nanoparticles and glucose oxidase for glucose biosensing, Langmuir 21 (2005) 9630–9634.
    [8] Zhang, F.F.; Wang, X.L.; Ai, S.Y.; Sun, Z.D.; Wan, Q.; Zhu, Z.Q.; Xian, Y.Z.; Jin, L.T.; Yamamoto, K. Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal. Chim. Acta 2004, 519, 155-160.
    [9] Muhammad, S.; Ali, U.; Nur, O.; Willander, M.; Danielsson, B. Glucose detection with a commercial MOSFET using a ZnO nanowires extended gate. IEEE Trans. Nanotechnol. 2009, 8, 678-683.
    [10] Wei, A.; Sun, X.W.; Wang, J.X.; Lei, Y.; Cai, X.P.; Li, C.M.; Dong, Z.L.; Huang, W. Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Appl. Phys. Lett. 2006, 89, 123902:1-123902:3.
    [11] Al-Hilli, S.M.; Öst, A.; Strålfors, P.; Willander, M. ZnO nanorods as an intracellular sensor for pH measurements. J. Appl. Phys. 2007, 102, 187-200.
    [12] Julio Raba and Horacio A. Mottola*“Glucose Oxidase as an Analytical Reagent” Critical Reviews in Analytical Chemistry, 25(1):1–42 (1995)
    [13] Luo, X.L.; Xu, J.J.; Zhao, W.; Chen, H.Y. A novel glucose ENFET based on the special reactivity of MnO 2 nanoparticles. Biosens. Bioelectron. 2004, 19, 1295-1300.

    Chapter 6.
    [1] J.X. Wang, X.W. Sun, A. Wei, Y. Lei, X.P. Cai, C.M. Li, Z.L. Dong, Zincoxide nanocomb biosensor for glucose detection, Appl. Phys. Lett. 88 (2006)233106–233108.
    [2] A. Umar, M.M. Rahman, S.H. Kim, Y.B. Hahn, ZnO nanonails: synthesis and their application as glucose biosensor, J. Nanosci. Nanotechnol. 8 (2008) 3216–3221.
    [3] A. Wei, X.W. Sun, J.X. Wang, Y. Lei, X.P. Cai, C.M. Li, Z.L. Dong, W. Huang, Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition, Appl. Phys. Lett. 89 (2006) 123902–123904.
    [4] J.F. Zang, C.M. Li, X.Q. Cui, J.X. Wang, X.W. Sun, H. Dong, C.Q. Sun, Tailoring zinc oxide nanowires for high performance amperometric glucose sensor, Electroanalysis 19 (2007) 1008–1014.
    [5] K. Yang, G.W. She, H. Wang, X.M. Ou, X.H. Zhang, C.S. Lee, S.T. Lee, ZnO nanotube arrays as biosensors for glucose, J. Phys. Chem. C 113 (2009) 20169–20172.
    [6] X.W. Liu, Q.Y. Hu, Q. Wu, W. Zhang, Z. Fang, Q.B. Xie, Aligned ZnO nanorods:a useful film to fabricate amperometric glucose biosensor, Colloids Surf. B 74 (2009) 154–158.
    [7] T. Kong, Y. Chen, Y.P. Ye, K. Zhang, Z.X. Wang, X.P. Wang, An amperometricglucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes, Sens. Actuators B 138 (2009) 344–350.
    [8] Z.H. Dai, G.J. Shao, J.M. Hong, J.C. Bao, J. Shen, Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor, Biosens. Bioelectron. 24 (2009) 1286–1291.

    下載圖示 校內:2016-07-04公開
    校外:2018-07-04公開
    QR CODE