簡易檢索 / 詳目顯示

研究生: 劉彥均
Liu, Yen-Chung
論文名稱: 奈米相變化膠囊懸浮液於具平行/漸擴毫米流道熱沉內強制對流熱傳遞特性之比較研究
A Comparative Study on Forced Convection Heat Transfer Characteristics of NEPCM Suspension in Parallel and Divergent Mini-channel Heat Sink
指導教授: 何清政
Ho, Ching-Jenq
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 109
中文關鍵詞: 水底懸浮液奈米相變化膠囊強制對流漸擴流道毫米流道熱沉
外文關鍵詞: water-based suspension, nano-PCM capsules, forced convection, divergent channel, minichannel heat sink
相關次數: 點閱:145下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採取實驗方式,就以相變化材料奈米膠囊與純水調配而成之奈米相變化膠囊懸浮液取代純水,探討其分別流經具平行/漸擴流道兩個毫米熱沉時所呈現強制對流熱傳遞特性,並進一步評比兩毫米熱沉所呈現熱散逸功效。實驗所使用之平行及漸擴流道兩毫米熱沉均具八條入口寬度1.0mm、高度1.5 mm及長度50mm之單位流道,其間差別僅在於單位流道水平寬度自進口端起分別為固定不變與線性遞增,因而出口端流道其水平寬度分別為1.0mm 與2.2mm。本實驗所探討相關參數範圍為;奈米相變化膠囊懸浮液內含膠囊質量分率與相變化材料質量分率分別為nepcm =1%、2%、5%與pcm = 0.63%、1.8%、3.8%;體積流率 Qf =50~420 cm3 /min(雷諾數Ref = 112-940),毫米流道熱沉之加熱功率 qh = 10~30 W,進口懸浮液溫度 Tin =33.5~34.3 ℃。由本文所得強制對流熱傳遞實驗結果分析顯示,以奈米相變化膠囊懸浮液取代純水做為工作流體之平行或漸擴流道熱沉,於固定加熱通量下兩者所呈現熱傳遞增益情形均取決於懸浮液進口溫度、內含相變化材料質量分率、及其體積流率之適宜組合。此外,將奈米相變化膠囊懸浮液流經兩毫米流道熱沉所致熱傳遞增益量與其伴隨壓降上升量列入整體考量所得之熱溢散增益指數(FOM)及性能係數(COP)之結果顯示,由於漸擴流道熱沉其所產生壓降上升量較低,而具較高之熱溢散增益指數(FOM)及性能係數(COP)。

    In the present study, the force convection heat characteristics of a cross-section designed two mini-channel heat sinks with parallel and laterally divergent cross-sections, respectively, were studied experimentally to explore their cooling efficacies of using water-based suspensions of nano-phase change material (nano-PCM) capsules. The parallel and divergent mini-channel heat sinks used in experiments were fabricated using oxygen-free copper, constructed of eight rectangular channels of 50 mm in length and 1.5 mm in height with width, respectively, fixed at 1.0 mm and axially increased from 1.0mm at the inlet to 2.2 mm at the exit of each channel. Forced convective cooling experiments have been performed for the parallel and divergent minichannel heat sinks, respectively, with the relevant variables in the following ranges: the volumetric flow rate, = 50~420 cm3 /min; the heating power dissipated by the heat sinks, qh = 10~30 W; the inlet temperature of water-based suspensions, Tin = 33.5~34.3C; and the mass fractions of the nano-PCM capsules dispersed and the phase change materials contained in the water-based suspensions, nepcm = 1%、2%、5% ,pcm = 0.63%、1.8%、3.8%, respectively. The resulting ranges of dimensionless parameters pertinent to the present experiments are: the Reynolds number, Ref = 112-940; the Peclet number, Pef = 554-5221; the modified Stefan number, = 0.18-0.516; and the inlet subcooling parameter, = 0.01825-0.0334 The experimental results obtained clearly demonstrate promising efficacy of using the water-based suspensions nano-PCM capsules formulated to replace pure water as the forced convective cooling fluid in both the parallel and divergent minichannel heat sinks. Meanwhile, the cooling performances of the two minichannel heat sinks was compared in terms of their figure of merit (FOM) and coefficient of performance (COP) by taking the accompanied pressure drop penalty of using the water-based suspensions of nano-PCM capsules into account. The heat sink with divergent minichannels appears outperform significantly that with parallel minichannels.

    中文摘要 I ABSTRACT II 致謝 IV 符號表 V 目錄 IX 圖目錄 XII 表目錄 XV 第一章 序論 1 1-1前言 1 1-2文獻回顧 1 1-3 研究動機與目的 5 1-4 論文架構 5 第二章 實驗方法與數據處理 6 2-1 實驗設備 6 2-1-1毫米流道熱沉孔 6 2-1-2 實驗迴路 7 2-1-3實驗預備工作 7 2-1-4實驗步驟 8 2-2工作流體配製 8 2-2-1 相變化膠囊製備 8 2-2-2 後續處理 10 2-2-3相變化膠囊懸浮液調配 10 2-3 相變化膠囊相關熱物理性質 11 2-3-2 相變化潛熱及比熱量測 12 2-3-3 工作流體熱物理性質 13 2-4 相關變數與無因次參數 15 2-5實驗不準度以及誤差分析 23 第三章 結果與討論 26 3-1平行流道與漸擴流道純水結果 26 3-1-1平行流道之無因次壁溫 26 3-1-2 平行流道之摩擦因子 27 3-1-3平行流道之紐賽數 28 3-1-4漸擴流道之無因次溫度 29 3-1-5 漸擴流道摩擦因子 30 3-1-6漸擴流道平均紐賽數 31 3-2平行流道與漸擴流道奈米膠囊懸浮液之結果 32 3-2-1平行流道之奈米膠囊懸浮液之摩擦因子 32 3-2-2平行流道之無因次壁溫與平均紐賽數 33 3-2-3平行流道之平均熱傳增益 34 3-2-4平行流道之壁溫壓抑增益比 35 3-2-5 平行流道之FOM與COP 36 3-2-6平行流道之熱阻 36 3-2-7漸擴流道之奈米膠囊懸浮液之摩擦因子 37 3-2-8漸擴流道之無因次壁溫與平均紐賽數 37 3-2-9漸擴流道之平均熱傳增益 39 3-2-10漸擴流道之壁溫壓抑增益比 40 3-2-11 漸擴流道之FOM與COP 40 3-2-12漸擴流道之熱阻 41 3-3漸擴與平行流道之純水比較 41 3-3-1無因次溫度 41 3-3-2 摩擦因子 42 3-3-3紐賽數 42 3-4漸擴與平行流道之奈米膠囊懸浮液比較結果 42 3-4-1摩擦因子 42 3-4-2無因次壁溫 43 3-4-3平均熱傳增益 44 3-4-4 FOM與COP 44 第四章 結論與未來方向 46 4-1結論 46 4-2 未來方向 47 使用圖表 49 參考文獻 100 附錄 103 自述 109

    [1] D. B. Tuckerman and R. Pease, "High-performance heat sinking for VLSI," Electron Device Letters, IEEE, vol. 2, pp. 126-129, 1981.
    [2] X. F. Peng and G. P. Peterson, "Forced Convection Heat Transfer of
    Single-Phase Binary Mixtures Through Microchannels," 1996.
    [3] W. Qu and I. Mudawar, "Analysis of three-dimensional heat transfer in micro-channel heat sinks," International Journal of Heat and Mass Transfer, vol. 45, pp. 3973-3985, 2002.
    [4] W. S. Lee, B. R. Chen, and S. L. Chen, "Latent heat storage in a two-phase thermosyphon solar water heater," Journal of solar energy engineering, vol. 128, p. 69, 2006.
    [5] Y. Rao, F. Dammel, P. Stephan, and G. Lin, "Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels," Heat and Mass Transfer, vol. 44, pp. 175-186, 2007.
    [6] W. Wu, H. Bostanci, L. C. Chow, Y. Hong, C. M. Wang, M. Su, et al., "Heat transfer enhancement of PAO in microchannel heat exchanger using nano-encapsulated phase change indium particles," International Journal of Heat and Mass Transfer, vol. 58, pp. 348-355, 2013.
    [7] R. Sabbah, Farid,M.M.,Al-Hallaj,S., ","Micro-channel Heat Sink with slurry of Water with Micro-encapsulated Phase Change Material:3D-numerical Study,"" 2008.
    [8] 鄭偉成, "毫米流道熱沉孔內奈米微粒/相變化微膠囊懸浮液之強制對流特性研究," 國立成功大學機械工程研究所碩士論文 2009.
    [9] 陳彥仲, "相變化奈米膠囊懸浮液在具毫米流道熱源與熱沉之自然對流迴路內熱傳特性實驗研究," 國立成功大學機械工程研究所碩士論文, 2012.
    [10] T.-C. Hung, T.-S. Sheu, and W.-M. Yan, "Optimal thermal design of microchannel heat sinks with different geometric configurations," International Communications in Heat and Mass Transfer, vol. 39, pp. 1572-1577, 2012.
    [11] T.-C. Hung and W.-M. Yan, "Enhancement of thermal performance in double-layered microchannel heat sink with nanofluids," International Journal of Heat and Mass Transfer, vol. 55, pp. 3225-3238, 2012.
    [12] T.-C. Hung and W.-M. Yan, "Effects of tapered-channel design on thermal performance of microchannel heat sink," International Communications in Heat and Mass Transfer, vol. 39, pp. 1342-1347, 2012.
    [13] V. S. Duryodhan, S. G. Singh, and A. Agrawal, "Liquid flow through a diverging microchannel," Microfluidics and Nanofluidics, vol. 14, pp. 53-67, 2012.
    [14] S.-M. Kim and I. Mudawar, "Analytical heat diffusion models for different micro-channel heat sink cross-sectional geometries," International Journal of Heat and Mass Transfer, vol. 53, pp. 4002-4016, 2010.
    [15] A. Agrawal, V. S. Duryodhan, and S. G. Singh, "Pressure Drop Measurement With Boiling In Diverging Microchannel," 2011.
    [16] J. V. Barios, "Design and Fabrication of Heat Transfer-Enhancing Cooling Channels through Three DImensional Printing," 1995.
    [17] E. Trivilos, "Performance and flow regimes in plane 2-D diffusers with exit channels at low reynolds numbers," 2003.
    [18] L. C. W. C.J. Ho*, Z.W. Li, "An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid," 2010.
    [19] J.-F. Su, X.-Y. Wang, and H. Dong, "Micromechanical properties of melamine–formaldehyde microcapsules by nanoindentation: Effect of size and shell thickness," Materials Letters, vol. 89, pp. 1-4, 2012.
    [20] S. G.Kandlikar, "Single-Phase liquid flow in minichannels and microchannels."
    [21] P. S. Lee, S. V. Garimella, and D. Liu, "Investigation of heat transfer in rectangular microchannels," International Journal of Heat and Mass Transfer, vol. 48, pp. 1688-1704, 2005.
    [22] A. B. S. Alquaity, S. A. Al-Dini, E. N. Wang, and B. S. Yilbas, "Numerical investigation of liquid flow with phase change nanoparticles in microchannels," International Journal of Heat and Fluid Flow, vol. 38, pp. 159-167, 2012.

    下載圖示 校內:2016-08-02公開
    校外:2018-08-02公開
    QR CODE