| 研究生: |
潘存真 Pan, Tsun-Chen |
|---|---|
| 論文名稱: |
複合材料FRP補強預力混凝土T形梁非線性有限元素分析 Nonlinear Finite Element Analysis of Prestressed Concrete T-Beams Strengthened by Fiber Reinforced Plastic Materials |
| 指導教授: |
胡宣德
Hu, H-T |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 188 |
| 中文關鍵詞: | 預力混凝土T形梁 、數值分析模式 、FRP疊層材料補強 、纖維角度 |
| 外文關鍵詞: | Prestressed Concrete T-Beams, Numerical Analysis Model, FRP Reinforcements, Textile Fiber Angle |
| 相關次數: | 點閱:131 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
預力混凝土構件大量用於現代化之先進式施工法,以提昇結構之淨跨距並承受高負載之反覆荷重;但常因超出設計荷重之活載重或地震力作用,致預力混凝土梁構件產生開裂破壞行為,並降低極限承載能力。故採用FRP 疊層材料(Fiber Reinforced Plastics)補強修復預力混凝土構件,實為現今較經濟且節省工時之主流;提具合理且信賴度高之數值分析模式,藉以準確預測補強後預力構件的極限強度及開裂相關趨勢,供工程實務界欲採用該工法進行補強時之參照。
本文使用有限元素ABAQUS 分析軟體,針對FRP 疊層材料補強預力混凝土T形梁提出非線性有限元素分析理論。分析之數值模型依構件結構尺寸分為長梁和短梁兩種,預力混凝土梁中初始預力施加方式分為低預力量、中預力量及高預力量三種情形,外力載重之施加為靜態單調持續加載方式,整體預力混凝土梁分析則採取靜力分析模式;另於FRP 補強型式上可分為梁底面補強及梁腹版兩側補強,並就FRP疊層材料補強之不同疊層數與黏貼纖維角度進行參數分析,藉此探究其補強後之預力混凝土梁之極限載重及開裂行為之變化趨勢。
Prestressed concrete structures are frequently used in modern advanced construction methods to increases the span of structures and enhance the bearing capacity under cycling loading. However, prestressed concrete members are usually damaged or cracked and reduce their ultimate loading capacity due to the live load exceeding the design load or the effect of the earthquake force. Therefore, the use of Fiber Reinforced Plastic (FRP) to enhance and repair prestressed concrete members is the mainstream construction method that is more economical and time-saving than traditional processes. Furthermore, employing the reasonable and reliable numerical analysis model in advance is required to precisely predict reinforced prestressed concrete members’ ultimate strength and tendency to crack, which can serve as reference for practitioners to reinforce their construction.
This paper presents a nonlinear model of prestressed concrete T-shaped beams strengthened by FRP with the Finite Element Analysis (FEA) software package, ABAQUS. The analyzed models are divided according to their size, into long beams and short beams. In addition, there are low, middle and high prestressed forces in regard to the exertion of the initial prestressed forces. As for the types of FRP reinforcement, there are reinforcements in the bottom face as well as the lateral face of the beams. The parameter analysis is carried out in layers and angles of the FRP reinforcements. Under the above conditions, this paper aims to explore the ultimate loading of prestressed concrete structures strengthened by FRP and the variations of beam cracks.
ACI Committee 318 (2005), Building Code Requirements for Reinforced Concrete.Detroit, Michigan: American Concrete Institute.
ACI Committee 318 (2008), Building Code Requirements for Structural Concrete and Commentary (ACI 318-08). Detroit, Michigan: American Concrete Institute.
Abaqus, Inc. (2009), Abaqus Analysis User's Manuals and Example Problems Manuals, Version 6.8 Providence, Rhode Island.
Alagusundaramoorthy P., Harik I. E., and Basunbul I. A. (2003),”Flexural Behavior of RC Beams Strengthened with Carbon Fiber Reinforced Polymer Sheets or Fabric,” Journal of Composite for Construction, 7(4), pp. 292~301.
ASCE Task Committee on Concrete and Masonry Structure (1982), “State of the artreport on finite element analysis of reinforced concrete”.
Chen W-F (1982), Plasticity in reinforced concrete, McGraw-Hill.
Chen W-F, Han D-J (1988), Plasticity for structural engineers, Springer-Verlag New York Inc.
Chajes MJ, Januszka TF, Mertz DR, Thomson TA, Finch WW (1995), “Shear strengthening of reinforced concrete beams using externally applied composite fabrics,” ACI Structural Journal, 92(3) pp. 295~303.
Chaallal O, Shahawy M, Hassan M (2003), “Performance of axially loaded short rectangular columns strengthened with carbon fiber reinforced polymer wrapping,” Journal of Composite for Construction, 7(3) pp. 200~208.
Clark, L. A., Speirs, D. M. (1978), “Tension Stiffening in Reinforced Concrete Beams and Slabs under Short-Term Load,” Cement and Concrete Association., Technical Report 42.521.
Coulomb, C. A. (1776), “Essai sur une application des regles des maximis et minimis a quelquels problemesde statique relatifs, a la architecture, ” Mem. Acad. Roy. Div. Sav., 7, pp. 343~387.
Ebead U, Marzouk H (2004), “Fiber-reinforced polymer strengthening of two-wayslabs,” ACI Structural Journal, 101(5) pp. 650~659.
El-Tawil S, Okeil AM (2002), “LRFD flexural provisions for prestressed concretebridge girders strengthened with carbon fiber-reinforced polymer laminates,” ACI Structural Journal, 99(2) pp. 181~190.
E. Mörsch (1909), “Concrete-steel construction,” The Engineering News Publishing Company in New York.
Eibl J (1983), “Concrete under multiaxial states of stress constitutive equation for practical design,” Bulletin d'information no.156, Paris: Comite Euro International du Beton.
Ghali A, Favre R (1994), Concrete structures: stresses and deformations, London,Spon.
Hognestad E (1951), “A Study of Combined Bending and Axial Load in Reinforced Concrete Members,” University of Illinois Engineering Experimental Station, Bulletin Series No.399, November, pp. 128.
Gupta, A. K., Maestrini, S. R. (1990), “Tension-stiffness model for reinforced concrete barsx,” J. Struct. Eng.,ASCE, 116(3), pp. 769~790.
Hahn HT, Tsai SW (1973), “Nonlinear elastic behavior of unidirectional composite laminate,” Journal of Composite Materials, 7(1) pp. 102~118.
Hassan T, Rizkalla S (2002), “Flexural strengthening of prestressed bridge slabs with FRP systems,” PCI Journal, 47(1) pp. 76~93.
Hillerborg, A., Modeer, M., Petersson, P.E. (1976), “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements,” Cement and Concrete Research, 6, pp. 773~782.
Hu H-T, Schnobrich WC (1989), “Constitutive modeling of concrete by using nonassociated plasticity,” Journal of Mater Civil Eng (ASCE), 1(4) pp. 199~216.
Hu H-T, Schnobrich WC (1990), “Nonlinear analysis of cracked reinforced concrete,” ACI Structure Journal, 87(2) pp. 199~207.
Hu H-T, Lin F-M and Jan Y-Y (2004), “Nonlinear Finite Element Analysis of Reinforced Concrete Beams Strengthened by Fiber-Reinforced Plastics,” Composite Structures, 63(3-4) pp. 271~281.
Hu H-T, Lin F-M, Liu H-T, Huang Y-F, Pan T-C (2010), “Constitutive Modelingof Reinforced Concrete and Prestressed Concrete Structures Strengthened by Fiber Reinforced Plastics,” Journal of Composite Structures, 192(7) pp. 1640~1650.
Huang PC, Nanni A (2006), “Dapped-end strengthening of full-scale prestresseddouble tee beams with FRP composites,” Advances in Structural Engineering, 9(2) pp. 293~308.
Jeremy M. Gilstrap, Chad R. Burke, Daniel M. Dowden, and Charles W. Dolan (1997), “Development of FRP Reinforcement Guidelines for Prestressed ConcreteStructures,” Journal of Composites for Construction, 11 pp. 131.
Jones RM, Morgan HS (1977), “Analysis of nonlinear stress-strain behavior of fiber-reinforced composite materials,” AIAA Journal, 15(12) pp. 1669~1676.
Juvinal, Robert C., Marshek, Kurt (1991), “Fundamentals of machine component design– 2nd,” pp. 217.
Kaklauskas G., Ghaboussi J. (2001), “Stress-strain relations for cracked tensile concrete from RC beam tests,” J Struct Eng-ASCE 127(1), pp. 64~73.
Kim YJ, Shi C, Green MF (2008), “Ductility and cracking behavior of prestressed concrete beams strengthened with prestressed CFRP sheets,” Journal of Composites for Construction, 12(3) pp. 274~283.
Kupfer H, Hilsdorf HK, Rusch H (1969), “Behavior of concrete under biaxialstresses,” ACI Journal, 66(8) pp. 656~666.
Larson KH, Peterman RJ, Rasheed HA (2005), “Strength-fatigue behavior of fiber reinforced polymer strengthened prestressed concrete T-beams,” Journal of Composites for Construction, 9(4) pp. 313~326.
Lee DC, Karbhari VM (2005), “Rehabilitation of large diameter prestressed cylinder concrete pipe (PCCP) with FRP composites - Experimental investigation,” Advances in Structural Engineering, 8(1) pp. 31~44.
Lin W-P, Hu H-T (2002), “Nonlinear Analysis of Fiber-Reinforced Composite Laminates Subjected to Uniaxial Tensile Load,” Journal of Compo-site Materials, 36(12) pp. 1429~1450.
Lin W-P, Hu H-T (2002), “Parametric Study on the Failure of Fiber Reinforced Composite Laminates under Biaxial Tensile Load,” Journal of Composite Materials, 36(12) pp. 1481~1504.
Lin T-Y, Strength of Continuous Prestressed Concrete Beams under Static and Repeated Loads. ACI Journal 1955; 10.
Malek AM, Saadatmanesh H (1998), “Analytical study of reinforced concrete beams strengthened with web-bonded fiber reinforced plastic plates or fabrics,” ACI Structural Journal, 95(3) pp.343~352.
Meier U., Kaiser H.(1991), “Strengthening of structures with FRP laminates”, In Proc. ASCE Specialty Conference on Advanced Composites Material in Civil Engineering Structures, ASCE, New York, NY pp. 224~232.
Michael L. (2000), Teaching collocation: further developments in the lexical approach, Thomson, Australia.
Mosallam AS, Mosalam KM (2003), “Strengthening of two-way concrete slabs with FRP composites laminates,” Construction and Building Materials, 17(1) pp. 43~54.
Mukhopadhyaya P, Swamy N, Lynsdale C (1998), “Optimizing structural response of beams strengthened with GFRP plates,” Journal of Composites for Construction (ASCE), 2(2) pp. 87~95.
Nanni A (1993), “Flexural behavior and design of RC members using FRP reinforcement,” Journal of Structural Engineering (ASCE), 119(11) pp. 3344~3359.
Narayanaswami R, Adelman HM (1977), “Evaluation of the tensor polynomial and Hoffman strength theories for composite materials,” Journal of Compos Mater, 11(4) pp. 366~377.
Niels Saabye Ottosen, Mattiristinmaa (2005), “The Mechanics of Constitutive Modeling,” Elsevier Science, Amsterdam, the Netherlands, pp. 165.
Pellegrino C, Modena C (2006), “Fiber-reinforced polymer shear strengthening of reinforced concrete beams: experimental study and analytical modeling,” ACI Structural Journal, 103(5) pp. 720~728.
Petrou MF, Parler D, Harries KA, Rizos DC (2008), “Strengthening of reinforced concrete bridge decks using carbon fiber-reinforced polymer composite materials,” Journal of Bridge Engineering, 13(5) pp. 455~467.
Prakhya G.K., Morley C.T. (1990), “Tension stiffening and moment-curvature relations for reinforced concrete elements,” ACI Struct J 87(5), pp. 597~605.
R. D. Mindlin (1951), “Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates,” Journal of Application Mechanics, 18, pp. 31~38.
Rabczuk T, Eibl J (2004), “Numerical analysis of prestressed concrete beams using a coupled element free Galerkin/finite element approach,” International Journal of Solids and Structures, 41(3-4) pp. 1061~1080.
Ritchie PA, Thomas DA, Lu LW, Connelly GM (1991), “External reinforcement of concrete beams using fiber reinforced plastics,” ACI Structural Journal, 88(4) pp. 490~500.
Rowlands RE (1985), “Strength failure theories and their experimental correlation. In: Sih GC, Skudra AM, editors,” Failure mechanics of composites. The Netherlands: Elsevier Science Publishers, pp. 71~125.
Rosenboom O, Rizkalla S (2006), “Behavior of prestressed concrete strengthenedwith various CFRP systems subjected to fatigue loading,” Journal of Composites for Construction, 10(6) pp. 492~502.
Saenz LP (1964), “Discussion of ‘‘Equation for the stress–strain curve of concrete” by Desayi P, and Krishnan S,” ACI Journal, 61(9) pp. 1229~1235.
Saadatmanesh H, Ehsani MR (1991), “RC beams strengthened with FRP plates II: analysis and parametric study,” Journal of Structural Engineering (ASCE), 117(11) pp. 3434~3455.
Seim W, Hörman M, Karbhari V, Seible F (2001), “External FRP poststrengthening of scaled concrete slabs,” Journal of Composites for Construction, 5(2) pp. 67~75.
Shahawy MA, Arockiasamy M, Beitelman T, Sowrirajan R (1996), “Reinforced concrete rectangular beams strengthened with CFRP laminates,” Composites Part B: Engineering, 27(3-4) pp. 225~233.
Shahawy MA, Beitelman T, Arockiasamy M, Sowrirajan R (1996), “Experimental investigation on structural repair and strengthening of damaged prestressed concrete slabs utilizing externally bonded carbon laminates,” Composites Part B: Engineering, 27(3-4) pp. 217~224.
Sharif A, Al-Sulaimani GJ, Basunbul IA, Baluch MH, Ghaleb BN (1994), “Strengthening of initially loaded reinforced concrete beams using FRP plates,” ACI Structural Journal, 91(2) pp. 160~167.
Tedesco JW, Stallings JM, El-Mihilmy M (1999), “Finite element method analysis of a concrete bridge repaired with fiber reinforced plastic laminates,” Computers and Structures, 72(1-3) pp. 379~407.
Teeraphot S, Phuwanat P, Amorn P (2004), “Finite element analysis of FRP- strengthened RC beams,” Songklanakarin J. Sci. Technol., 26(4) pp. 497~507.
Teng JG, Chen JF, Smith ST, Lam, L (2002), FRP Strengthened RC Structures, John Wiley & Sons, Inc.
Tresca, H. (1864), “Mémoire sur l'écoulement des corps solides soumis à de fortes pressions, ” C.R. Acad. Sci. Paris, 59, p.p. 754.
Tsai SW, Wu EM (1971), “A general theory of strength for anisotropic materials,” Journal of Compos Mater, 5(1) pp. 58~80.
Vecchio FJ, Bucci F (1999), “Analysis of repaired reinforced concrete structures,” Journal of Structural Engineering (ASCE), 125(6) pp. 644~652.
von Mises, R. (1913), “Mechanik der festen Körper im plastisch deformablen Zustand,” Göttin. Nachr. Math. Phys., 1, pp. 582~592.
Vougioukas E, Zeris CA, Kotsovos MD (2005), “Toward safe and efficient use of fiber-reinforced polymer for repair and strengthening of reinforced concrete structures,” ACI Structural Journal, 102(4) pp. 525~534.
Williams A. (1986), “Tests on large reinforced concrete elements subjected to direct tension,” Cement and Concrete Association, London, Tech. Rep. N.º42.562.
Wu Z.S., Iwashita K, Hayashi K, Higuchi T, Murakami S, Koseki Y (2003), “Strengthening prestressed-concrete girders with externally prestressed PBO fiber reinforced polymer sheets,” Journal of Reinforced Plastics and Composites, 22(14) pp. 1269~1286.
X. W. Zou (2003), “Flexural Behavior and Deformability of Fiber Reinforced Polymer Prestressed Concrete Beams,” Journal of Composites for Construction, 11 pp. 275.
林同棪撰、王樅譯述 (1971),預力混凝土結構之設計,中國工程師學會,臺北市。
蘇品書、賴耿陽 (1988),複合材料科學,復漢出版社,台南市。
董哲仁 (1993),鋼筋混凝土非線性有限元法原理與應用,中國鐵道,新華經銷, 北京市。
宋玉普、趙國藩 (1994),鋼筋混凝土結構分析中的有限單元法,大連理工大學出版社出版發行,大連市。
藤井太一、座古勝著、劉松柏譯 (2006),複合材料的破壞與力學,五南出版社,臺北市。
岳清瑞、楊勇新 (2006),複合材料在建築加固、修復中的應用,化學工業出版發行,北京市。
中華民國結構工程技師公會全國聯合會出版編著 (2008),鋼筋混凝土結構修復補強設計參考手冊,展智文化發行,臺北市。
林福銘 (2005),「纖維複合疊層材料補強鋼筋混凝土版之數值模擬」,國立成功大學土木工程研究所博士論文,台南市。
劉欣婷 (2005),「預力混凝土材料組合律之數值模擬」,國立成功大學土木工程研究所碩士論文,台南市。
黃郁棻 (2008),「複合材料補強預力混凝土版之研究」,國立成功大學土木工程研究所碩士論文,台南市。
林子淑 (2009),複合材料補強預力混凝土梁之非線性有限元素分析,國立成功大學土木工程研究所碩士論文,台南市。