簡易檢索 / 詳目顯示

研究生: 陳冠勳
Chen, Guan-Xun
論文名稱: 二極體雷射於聚合物之微鑽孔加工系統開發與分析
System development and analysis for micro-drilling of polymer with a diode laser
指導教授: 林震銘
Lin, Jehn-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 103
中文關鍵詞: 雷射鑽孔聚合物斜面效應
外文關鍵詞: laser drilling, polymer, inclination angle
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發二極體雷射加工系統應用於聚合物材料微鑽孔,並分析雷射斜角入射加工時,光束分佈特徵與成形孔輪廓之對應關係,藉此建立二極體雷射加工系統於三維成形之應用基礎。
    利用繞射理論分析二極體雷射光之分佈特性,並以特定角度入射基材,改變雷射光能量分佈及孔形輪廓。數值計算時考慮斜面吸收率之效應,分析不同傾斜角度下PVC及PS材料之移除輪廓,並使用Fluent軟體模擬基材受熱後自由表面之流場變化。
    實驗部分由光束分析儀觀察發現雷射光斑寬度在傾斜方向上隨角度增加而逐漸增加及功率密度分佈之趨勢。在PVC及PS鑽孔結果部分,發現鑽孔深度及寬度隨入射角變化之現象。實驗結果顯示不論在光束分析或是鑽孔成形輪廓,改變雷射光入射角度而產生的孔形輪廓變化趨勢與數值計算結果相符。

    This research aims to develop a diode laser micro-drilling system and analyze the laser drilling process on polymer with inclination angles. It is going to investigate the relationships between the beam intensity and drilling-hole contour. The proposed laser system could be adopted in the three-dimensional machining applications in the near future.

    Based on the diffraction theory, the intensity profile of the laser beam was analyzed on an inclined surface. Considering the variations of the laser absorption with incident angles, the drilling profile for PVC and PS substrates were calculated. Furthermore the free surface contours and flow fields of the laser drilling were simulated by FLUENT software.

    The experimental results show the tendency of the laser intensity profile observed by the beam profiler with various inclination angles. In the drilling of PVC and PS substrate, the drilling depth and width gradually change with the inclination angles. In both experimental approaches of the beam profile and drilling-hole contour, the tendencies with inclination angle were consistent with the numerical results.

    摘要I AbstractII 誌謝III 目錄IV 表目錄VIII 圖目錄IX 符號說明XV 第一章 緒論1 1-1 研究背景與動機1 1-2 研究目的2 1-3 文獻回顧3 1-3.1 雷射投影加工3 1-3.2 雷射加工聚合物材料9 1-3.3 雷射斜角加工11 1-4 本文架構13 第二章 製程原理14 2-1 雷射光特性14 2-1.1 二極體雷射原理14 2-1.2 雷射偏極性17 2-1.3 Fresnel equations18 2-2 雷射光於斜面上分佈20 2-2.1 雷射繞射公式20 2-2.2 雷射於斜板上光束特徵21 2-3 材料移除模型24 2-3.1 Beer’s law25 2-3.2 雷射移除聚合物材料理論26 第三章 數值分析及計算結果30 3-1 數值模擬模型與假設30 3-2 數值模擬參數說明32 3-3 數值模擬計算流程33 3-4 雷射斜角鑽孔模擬結果35 3-4.1 雷射光束於斜面上能量密度分佈計算結果39 3-4.2 材料移除輪廓計算結果41 3-5 PVC流場模擬分析48 3-5.1 物理模型假設48 3-5.2 流場模擬計算流程48 3-5.3 自由表面模型網格與邊界條件50 3-5.4 PVC基材流場模擬結果51 3-6 結果與討論54 第四章 實驗56 4-1 雷射光束分析實驗56 4-1.1 主要實驗設備與配置57 4-1.2 實驗參數59 4-1.3 雷射光束分析實驗結果60 4-1.3.1 矩型光罩500×700μm 光束分佈61 4-2 雷射功率量測66 4-2.1 實驗設備67 4-2.2 功率量測實驗結果67 4-3 斜角鑽孔實驗68 4-3.1 實驗設備68 4-3.2 斜角鑽孔加工參數69 4-3.3 斜角鑽孔實驗結果70 4-4 結果與討論82 第五章 綜合討論與建議84 5-1 綜合討論84 5-2 相關建議與未來發展87 參考文獻88 附錄A 繞射理論91 附錄B 基材雷射吸收率計算97 附錄C PVC流場模擬結果99 附錄D PS斜角鑽孔結果101

    [1] Conlisk K. , Favre S., Lasser T., O’Connor G. M., “Application of reconfigurable pinhole mask with excimer laser to fabricate microfluidic components”, Microfluidics and Nanofluidics, v 10, n 6, p 1247-1256, 2011.
    [2] Rizvi N. H., “Production of novel 3D microstructures using excimer laser mask projection techniques”, Proceedings of SPIE - The International Society for Optical Engineering, v 3680, n I, p 546-552, 1999.
    [3] Rumsby P. T., Gower M. C., “Excimer laser projector for microelectronics applications”, Proceedings of SPIE - The International Society for Optical Engineering, v 1598, p 36-45, 1991.
    [4] Foulon F., Green M., Lawes R.A., Baker J., Goodall F.N. , Arthur G., “Laser projection patterned processing of semiconductors”, Applied Surface Science, v 54, p 291-297, 1992.
    [5] Zimmer K., Braun A., Bigl F., “Combination of different processing methods for the fabrication of 3D polymer structures by excimer laser machining” , Applied Surface Science, v 154-155, p 601-604, 2000.
    [6] Duncan A. C., Weisbuch F., Rouais F., Lazare S., Baquey Ch., “Laser microfabricated model surfaces for controlled cell growth” , Biosensors and Bioelectronics, v 17, p 413–426, 2002.
    [7] Hayden C. J., “Three-dimensional excimer laser micromachining using greyscale masks” , Journal of Micromechanics and Microengineering, v 13, p 599-603, 2003.
    [8] Chae J., Jain J., “Excimer Laser Projection Photoablation Patterning of Metal Thin Films for Fabrication of Microelectronic Devices and Displays” , IEEE photonics technology letters, v 20, n 14, 2008.
    [9] Srinivasan R., Banton V. M. , “Self-developing photoetching of poly(ethylene terephthalate) films by far-ultraviolet excimer laser radiation”, Applied physics letters, v 41, p 576-578,1982.
    [10] Srinivasan R., “Ablation of polymers and biological tissue by ultraviolet lasers”, Science, New series, v 234, n 4776, p 559-565, 1986.
    [11] Kim J., Xu X., “Excimer laser fabrication of polymer microfluidic devices”, Journal of laser applications, v 15, n 4, p 255-260, 2003.
    [12] Guay J. M., Villafranca A., Baset F., Popov K., Ramunno L., Bhardwaj V. R., “Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate”, New Journal of Physics, v 14, 085010, 2012.
    [13] Wu C. Y., Shu C. W., Yeh Z. C., “Effects of excimer laser illumination on microdrilling into an oblique polymer surface”, Optics and Lasers in Engineering, v 44, p 842-857, 2006.
    [14] Pedder J. E. A., Holmes A. S., “A Study of Angular Dependence in the Ablation Rate of Polymers by Nanosecond Pulses”, Photon Processing in Microelectronic and Photonics V, v 6106 , p B1061-B1061, 2006.
    [15] Yao K. C., Lin J., “ The characterization of the hole-contour and plume ejection in the laser drilling with various inclination angles”, Optics and Laser Technology , v 48, p 110-116, 2013.
    [16] Davis C. C., “Lasers and electro-optics”, Cambridge university press, New York, p 288, 1995.
    [17] Albrecht H. E., Borys M., Damaschke N., Tropea C., “LaserDoppler and phase Doppler Measurement Techniques”, Springer, New York, p 43, 2002.
    [18] Yariv A., “Introduction to optical electronics”, Holt Rinechart and Winston, USA, p 53, 1976.
    [19] Lin Y. K., “Introduction to classical electrodynamics”, World Science, Philadelphia, p 190, 1986.
    [20] Goodman J. W., “Introduction to Fourier Optics”, McGraw-Hill, USA, p 75, 1996.
    [21] Steen W. M., “Laser material processing”, Springer, London, p 76-89, 1998.
    [22] Rubahn H. G., “Laser applications in surface science and technology”, Wiley, London, p 218-222, 1998.
    [23] Cain S. R., Burns F. C., Otis C. E., Braren B., “Photothermal description of polymer ablation: Absorption behavior and degradation time scales”, Journal of Applied Physics, v 72, p 5172-5178, 1992.
    [24] Cain S. R., “A photothermal model for polymer ablation: chemical modification “, Journal of Physical Chemistry , v 97, p 7572-7577, 1993.
    [25] George D. S., Onischenko A., Holmes A. S., “On the angular dependence of focused laser ablation by nanosecond pulses in solgel and polymer materials”, Applied physics letters, v 84, n 10, p1680-1682, 2004.
    [26] Pedder J. E. A., Holmes A. S., Dyer P. E., “Improved model for the angular dependence of excimer laser ablation rates in polymer materials” , Applied physics letters, v 95, 174105 , 2009.
    [27] Mark J. E., “Physical Properties of Polymers Handbook Second Edition” , Springer, New York, p 94.147.148.833.837, 2007.
    [28] Raciukaitis G., Gedvilas M., “Processing of Polymers by UV picosecond Lasers” , ICALEO 2005, M403, 2005.
    [29] Kudryashov S. I., Allen S. D., “Removal versus ablation in KrF dry laser cleaning of polystyrene particles from silicon” , Journal of Applied Physics , v 92, n 9, p5159-5162, 2002.
    [30] Hussein O. A., Chiad S. S., Habubi N. F., “Effect of Polystyrene Film Thickness on Some Optical Parameters”, Diyala Journal For Pure Science , v 6, p 314-320, 2010.
    [31] Piglowski J., “Temperature Dependence of Surface Tension of Poly(Vinyl Chloride) ”,Die Angewandte Makromolekulare Chemie, v 135, p 129-134,1985.

    下載圖示 校內:2023-12-31公開
    校外:2023-12-31公開
    QR CODE