| 研究生: |
陳冠勳 Chen, Guan-Xun |
|---|---|
| 論文名稱: |
二極體雷射於聚合物之微鑽孔加工系統開發與分析 System development and analysis for micro-drilling of polymer with a diode laser |
| 指導教授: |
林震銘
Lin, Jehn-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 雷射鑽孔 、聚合物 、斜面效應 |
| 外文關鍵詞: | laser drilling, polymer, inclination angle |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究開發二極體雷射加工系統應用於聚合物材料微鑽孔,並分析雷射斜角入射加工時,光束分佈特徵與成形孔輪廓之對應關係,藉此建立二極體雷射加工系統於三維成形之應用基礎。
利用繞射理論分析二極體雷射光之分佈特性,並以特定角度入射基材,改變雷射光能量分佈及孔形輪廓。數值計算時考慮斜面吸收率之效應,分析不同傾斜角度下PVC及PS材料之移除輪廓,並使用Fluent軟體模擬基材受熱後自由表面之流場變化。
實驗部分由光束分析儀觀察發現雷射光斑寬度在傾斜方向上隨角度增加而逐漸增加及功率密度分佈之趨勢。在PVC及PS鑽孔結果部分,發現鑽孔深度及寬度隨入射角變化之現象。實驗結果顯示不論在光束分析或是鑽孔成形輪廓,改變雷射光入射角度而產生的孔形輪廓變化趨勢與數值計算結果相符。
This research aims to develop a diode laser micro-drilling system and analyze the laser drilling process on polymer with inclination angles. It is going to investigate the relationships between the beam intensity and drilling-hole contour. The proposed laser system could be adopted in the three-dimensional machining applications in the near future.
Based on the diffraction theory, the intensity profile of the laser beam was analyzed on an inclined surface. Considering the variations of the laser absorption with incident angles, the drilling profile for PVC and PS substrates were calculated. Furthermore the free surface contours and flow fields of the laser drilling were simulated by FLUENT software.
The experimental results show the tendency of the laser intensity profile observed by the beam profiler with various inclination angles. In the drilling of PVC and PS substrate, the drilling depth and width gradually change with the inclination angles. In both experimental approaches of the beam profile and drilling-hole contour, the tendencies with inclination angle were consistent with the numerical results.
[1] Conlisk K. , Favre S., Lasser T., O’Connor G. M., “Application of reconfigurable pinhole mask with excimer laser to fabricate microfluidic components”, Microfluidics and Nanofluidics, v 10, n 6, p 1247-1256, 2011.
[2] Rizvi N. H., “Production of novel 3D microstructures using excimer laser mask projection techniques”, Proceedings of SPIE - The International Society for Optical Engineering, v 3680, n I, p 546-552, 1999.
[3] Rumsby P. T., Gower M. C., “Excimer laser projector for microelectronics applications”, Proceedings of SPIE - The International Society for Optical Engineering, v 1598, p 36-45, 1991.
[4] Foulon F., Green M., Lawes R.A., Baker J., Goodall F.N. , Arthur G., “Laser projection patterned processing of semiconductors”, Applied Surface Science, v 54, p 291-297, 1992.
[5] Zimmer K., Braun A., Bigl F., “Combination of different processing methods for the fabrication of 3D polymer structures by excimer laser machining” , Applied Surface Science, v 154-155, p 601-604, 2000.
[6] Duncan A. C., Weisbuch F., Rouais F., Lazare S., Baquey Ch., “Laser microfabricated model surfaces for controlled cell growth” , Biosensors and Bioelectronics, v 17, p 413–426, 2002.
[7] Hayden C. J., “Three-dimensional excimer laser micromachining using greyscale masks” , Journal of Micromechanics and Microengineering, v 13, p 599-603, 2003.
[8] Chae J., Jain J., “Excimer Laser Projection Photoablation Patterning of Metal Thin Films for Fabrication of Microelectronic Devices and Displays” , IEEE photonics technology letters, v 20, n 14, 2008.
[9] Srinivasan R., Banton V. M. , “Self-developing photoetching of poly(ethylene terephthalate) films by far-ultraviolet excimer laser radiation”, Applied physics letters, v 41, p 576-578,1982.
[10] Srinivasan R., “Ablation of polymers and biological tissue by ultraviolet lasers”, Science, New series, v 234, n 4776, p 559-565, 1986.
[11] Kim J., Xu X., “Excimer laser fabrication of polymer microfluidic devices”, Journal of laser applications, v 15, n 4, p 255-260, 2003.
[12] Guay J. M., Villafranca A., Baset F., Popov K., Ramunno L., Bhardwaj V. R., “Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate”, New Journal of Physics, v 14, 085010, 2012.
[13] Wu C. Y., Shu C. W., Yeh Z. C., “Effects of excimer laser illumination on microdrilling into an oblique polymer surface”, Optics and Lasers in Engineering, v 44, p 842-857, 2006.
[14] Pedder J. E. A., Holmes A. S., “A Study of Angular Dependence in the Ablation Rate of Polymers by Nanosecond Pulses”, Photon Processing in Microelectronic and Photonics V, v 6106 , p B1061-B1061, 2006.
[15] Yao K. C., Lin J., “ The characterization of the hole-contour and plume ejection in the laser drilling with various inclination angles”, Optics and Laser Technology , v 48, p 110-116, 2013.
[16] Davis C. C., “Lasers and electro-optics”, Cambridge university press, New York, p 288, 1995.
[17] Albrecht H. E., Borys M., Damaschke N., Tropea C., “LaserDoppler and phase Doppler Measurement Techniques”, Springer, New York, p 43, 2002.
[18] Yariv A., “Introduction to optical electronics”, Holt Rinechart and Winston, USA, p 53, 1976.
[19] Lin Y. K., “Introduction to classical electrodynamics”, World Science, Philadelphia, p 190, 1986.
[20] Goodman J. W., “Introduction to Fourier Optics”, McGraw-Hill, USA, p 75, 1996.
[21] Steen W. M., “Laser material processing”, Springer, London, p 76-89, 1998.
[22] Rubahn H. G., “Laser applications in surface science and technology”, Wiley, London, p 218-222, 1998.
[23] Cain S. R., Burns F. C., Otis C. E., Braren B., “Photothermal description of polymer ablation: Absorption behavior and degradation time scales”, Journal of Applied Physics, v 72, p 5172-5178, 1992.
[24] Cain S. R., “A photothermal model for polymer ablation: chemical modification “, Journal of Physical Chemistry , v 97, p 7572-7577, 1993.
[25] George D. S., Onischenko A., Holmes A. S., “On the angular dependence of focused laser ablation by nanosecond pulses in solgel and polymer materials”, Applied physics letters, v 84, n 10, p1680-1682, 2004.
[26] Pedder J. E. A., Holmes A. S., Dyer P. E., “Improved model for the angular dependence of excimer laser ablation rates in polymer materials” , Applied physics letters, v 95, 174105 , 2009.
[27] Mark J. E., “Physical Properties of Polymers Handbook Second Edition” , Springer, New York, p 94.147.148.833.837, 2007.
[28] Raciukaitis G., Gedvilas M., “Processing of Polymers by UV picosecond Lasers” , ICALEO 2005, M403, 2005.
[29] Kudryashov S. I., Allen S. D., “Removal versus ablation in KrF dry laser cleaning of polystyrene particles from silicon” , Journal of Applied Physics , v 92, n 9, p5159-5162, 2002.
[30] Hussein O. A., Chiad S. S., Habubi N. F., “Effect of Polystyrene Film Thickness on Some Optical Parameters”, Diyala Journal For Pure Science , v 6, p 314-320, 2010.
[31] Piglowski J., “Temperature Dependence of Surface Tension of Poly(Vinyl Chloride) ”,Die Angewandte Makromolekulare Chemie, v 135, p 129-134,1985.