| 研究生: |
嚴治宇 Yen, Chih-Yu |
|---|---|
| 論文名稱: |
GTAW與LBW製程對鎳基600合金銲件之抗腐蝕性研究 The Study of Corrosion resistance on Inconel 600 Alloy Butt-Welded by GTAW and LBW Processes |
| 指導教授: |
李驊登
Lee, Hwa-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 鎳基600合金 、惰性氣體鎢棒電弧銲接 、雷射銲接 、敏化 、熱履歷 、暫態溫度場 |
| 外文關鍵詞: | Inconel 600, GTAW, LBW, Sensitization, Welding Thermal Cycle, Transient Temperature Field |
| 相關次數: | 點閱:168 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要以GTAW與LBW兩種製程對鎳基600合金進行平板對接銲,探討材料經過銲接過程的局部溫度變化與銲件抗腐蝕能力,並搭配有限元素分析軟體ANSYS,分析探討銲件熱循環實際銲接與模擬預測的準確性,並對兩種不同製程銲件抗腐蝕能力進行評估,配合銲接入熱量、銲接熱循環歷程、溫度分布等因素探討不同製程銲件銲接情況,並使用有限元素分析軟體進行模擬分析材料銲接溫度場,及其銲接敏化區之範圍,以利將來敏化之防治及其銲接後殘留應力之計算使用。
溫度量測實驗結果顯示,相較GTAW製程,LBW極高的加熱速率(3780˚C/sec)與冷卻速率(275~283˚C/sec)及極低的入熱量,在本研究之銲接參數下銲件熱影響區於冷卻通過敏化溫度區間經歷時間僅1.5~1.7秒,有助於抑制晶界碳化鉻析出,而保有良好抗蝕能力。GTAW銲件熱影響區,由高溫冷卻通過敏化溫度區間(540~980˚C)的時間達20秒以上,導致銲件抗沿晶腐蝕能力下降。另一方面,由數值模擬銲接過程其結果也顯示,GTAW銲件與LBW銲件兩者熱履歷及銲接衰化範圍與實際銲接後的量測值有相近的結果與相同的趨勢。
This study investigated the effect of the temperature field on the sensitization tendencies and corrosion resistance of Inconel 600 butt welds fabricated using the gas tungsten arc welding (GTAW) processes and the laser beam welding (LBW) processes, respectively. The welding thermal cycles induced in the two welding process are simulated using ANSYS software based upon a moving heat source model and their corrosion resistance was evaluated by the Huey test. The validity of the numerical model is confirmed by comparing the simulation results with the corresponding experimental results.
The temperature measurements showed that LBW process resulted in much higher heating rate (3780˚C/sec) and cooling rate (275~283˚C/sec)of the weldment than GTAW process. Compared to the temperature observations in the heat affected zone of both weldments, it only took 1.5~1.7 seconds to pass through the sensitization range in the LBW weldment, whereas 20 seconds period was needed in the GTAW counterpart. The high cooling rate of LBW process is favourable for depressing Cr-carbides precipitation along the grain boundary, and hence to improve the corrosion resistance of weldments. Moreover, the simulation results presented in this study are found to be in good accordance with the experimental findings. Thus, the validity and general applicability of the thermal welding model are confirmed.
1. "U. S. Department of Energy, Annual Energy Review 2011", 2011.
2. 財團法人國家政策研究基金會, "核能發電之必要性(譯自The Need of Nuclear Power)", 國政研究報告, 2000.
3. T. Ishihiara, "Corrosion Failure and Its Prevention in Light Water Reactor," Welding International, pp. 209-216, 1989.
4. U. S. Nuclear Regulatory Commission, Jet Pump Hold-Down Beam Failure, NRC Information Notice pp. 93-101, 1993.
5. 葉宗洸, 余明昇, "國內外沸水式反應器壓力槽內部組件的劣化問題", 核研季刊Vol. 22, pp. 49-69, 1997.
6. 梁仲賢, "壓水式核反應器材料的腐蝕與防治對策", 核研季刊, Vol. 26, pp. 8-12, 1999.
7. H. Xu, and S. Fyfitch, “Laboratory Investigation of PWSCC of CRDM Nozzle 3 and Its J-Groove weld on the Davis-Besse Reactor Vessel Head”, Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System Water Reactors, pp. 833-842 , 2005.
8. J. Gorman, S. Hunt, P. Riccardella, and G.A. White, "PWR Reactor Vessel Alloy 600 Issues," ASME Ch44, pp. 1-26, 2009.
9. “材料手冊(II)非鐵金屬材料” ,中國材料科學學會 ,pp. 251-324, 1983.
10. M.K. Ahn, H.S. Kwon, and J.H. Lee, "Predicting Susceptibility of Alloy 600 to Intergranular Stress Corrosion Cracking Using a Modified Electrochemical Potentiokinetic Reactivation Test," Corrosion, Vol.51 (6), pp. 441-449, 1995.
11. S.S. Hwang, H.P. Kim, D.H. Lee, U.C. Kim, and J.S. Kim, "The mode of stress corrosion cracking in Ni-base alloys in high temperature water containing lead," Journal of Nuclear Materials, Vol.275 (1), pp. 28-36, 1999.
12. V. KainandY. Watanabe, "Development of a single loop EPR test method and its relation to grain boundary microchemistry for alloy 600," Journal of Nuclear Materials, Vol.302 (1), pp. 49-59, 2002.
13. 吳宗峰, "鎳基600合金之敏化及電化學再活化特性研究." 國立成功大學材料科學及工程學系博士論文, 2002.
14. T.-F. WuandW.-T. Tsai, "Effect of KSCN and its concentration on the reactivation behavior of sensitized alloy 600 in sulfuric acid solution," Corrosion Science, Vol.45 (2), pp. 267-280, 2003.
15. J. Kai, C. Tsai, T. Huang, and M. Liu, "The effects of heat treatment on the sensitization and SCC behavior of INCONEL 600 alloy," Metallurgical and Materials Transactions A, Vol.20 (6), pp. 1077-1088, 1989.
16. G.K. Dey, D. Srivastava, M. Sundararaman, and P. Mukhopadhyay, "Microstructural studies on rapidly solidified alloy 600," Scripta Materialia, Vol.34 (4), pp. 625-631, 1996.
17. Y. Lim, J. Suh, J. Kim, and I. Kuk, "Microscopic investigation of sensitized Ni-base alloy 600 after laser surface melting," Metallurgical and Materials Transactions A, Vol.28 (5), pp. 1223-1231, 1997.
18. J.H. Suh, J.K. Shin, S.J.L. Kang, Y.S. Lim, I.H. Kuk, and J.S. Kim, "Investigation of IGSCC behavior of sensitized and laser-surface-melted Alloy 600," Materials Science and Engineering: A, Vol.254 (1-2), pp. 67-75, 1998.
19. Y.S. Lim, J.S. Kim, and H.S. Kwon, "Effects of sensitization treatment on the evolution of Cr carbides in rapidly solidified Ni-base Alloy 600 by a CO2 laser beam," Materials Science and Engineering A, Vol.279 (1-2), pp. 192-200, 2000.
20. Y.S. Lim, H.P. Kim, J.H. Han, J.S. Kim, and H.S. Kwon, "Influence of laser surface melting on the susceptibility to intergranular corrosion of sensitized Alloy 600," Corrosion Science, Vol.43 (7), pp. 1321-1335, 2001.
21. G. Bao, K. Shinozaki, M. Inkyo, T. Miyoshi, M. Yamamoto, Y. Mahara, and H. Watanabe, "Modeling of precipitation and Cr depletion profiles of Inconel 600 during heat treatments and LSM procedure," Journal of Alloys and Compounds, Vol.419 (1-2), pp. 118-125, 2006.
22. R. Rios, T. Magnin, D. Noel, and O. de Bouvier, "Critical analysis of alloy 600 stress corrosion cracking mechanisms in primary water," Metallurgical and Materials Transactions A, Vol.26 (4), pp. 925-939, 1995.
23. A. Aguilar, J.L. Albarran, H.F. Lopez, and L. Martinez, "Microstructural response on the cracking resistance of alloy 600," Materials Letters, Vol.61 (1), pp. 274-277, 2007.
24. "ASM Metals HandBook. Heat Treating," Vol. 4, pp. 1770-1771.
25. Inconel Alloy 600, Special Metals Corporation , 2008.
26. C. T. Sims, N. S. Stoloff, and W. C. Hagel, “Superalloys II,” Wiley, New York, 1987.
27. 王振欽,"銲接學",高立圖書,2003。
28. 周長彬、蘇程裕、蔡丕樁、郭央諶,”銲接學”,全華科技圖書,台北,2005。
29. W. W. Duley, “Laser Welding”, Wiley, New York , 1999.
30. M.B.C. Quigley, "High Power Density Welding", in The Physics of Welding, J.F. Lancaster, Editor., Pergamon Press, 1986.
31. S. Liu and J. E. Indacochea, “Metal Handbook, Vol. 1, Property and Selection : Irons, Steels and High-Performance Alloy”, pp.603-613, 1990.
32. S. Kou, “Welding metallurgy”, Wiley, New York,, pp.269-270, 1987.
33. 陳精一,”ANSYS6 .0 電腦輔助工程分析”,全華圖書,2003。
34. 李輝煌,”ANSYS工程分析基礎與概念”,高立圖書,2005。
35. 康淵,陳信吉,”ANSYS入門”,全華圖書,2006。
36. ANSYS, Inc, Southpointe 275 Technology Drive Canonsburg, PA 15317.
37. 牛文俊,“銲接熱對鎳基600合金銲件耐蝕性之影響”,國立成功大學機械工程研究所碩士論文,2008。
38. 郭聰源,"鎳基690合金銲接特性研究",國立成功大學機械研究所博士論文,1999。
39. 范文傑,"Nd-YAG雷射銲接製程參數對鎳基690與304L不銹鋼異種銲接之影響",國立成功大學機械研究所碩士論文,2005。
40. 李孟軒,“GTAW與LBW製程對鎳基690合金對接銲之殘留應力研究”,國立成功大學機械工程研究所碩士論文,2007。
41. ASTM, Standard Designation A262-Practice A-F, Reapproved 2008. pp. 1–16.
42. ANSYS. 2010, Southpointe 275 Technology Drive Canonsburg
43. J. Goldak, A. Chakravarti, and M. Bibby, "A new finite element model for welding heat sources," Metallurgical and Materials Transactions B, Vol.15 (2), pp. 299-305, 1984.
44. W. M. Steen, "Laser Material Processing", Springer-Verlag, 1991.
45. "Welding Handbook", 7th ed, ed. C. Weisman. Vol. 1, American Welding Society, 1976.
46. D. Radaj, "Heat effects of welding", Springer-Verlag, 1992.
47. M.G. Fontana, "Corrosion Engineering", 3rd ed, New York, McGraw Hill, 1986.
48. H.T. Lee and J.L. Wu, "The effects of peak temperature and cooling rate on the susceptibility to intergranular corrosion of alloy 690 by laser beam and gas tungsten arc welding," Corrosion Science, Vol.51 (3), pp. 439-445, 2009.
49. H.T. Lee, C.T. Chen, and J.L. Wu, "Numerical and experimental investigation into effect of temperature field on sensitization of Alloy 690 butt welds fabricated by gas tungsten arc welding and laser beam welding," Journal of Materials Processing Technology, Vol.210 (12), pp. 1636-1645, 2010.
50. 吳佳霖,“雷射與電弧銲接製程對鎳基690合金銲接特性與應力腐蝕破裂行為之研究”,國立成功大學機械工程研究所博士論文,2010。
51. 陳俊德,“鐳射與惰性氣體鎢極電弧銲接溫度場對沃斯田鐵系不銹鋼敏化之研究”,國立成功大學機械工程研究所博士論文,2011。
52. G. Bao, K. Shinozaki, S. Iguro, M. Inkyo, M. Yamamoto, Y. Mahara, and H. Watanabe, "Stress corrosion cracking sealing in overlaying of Inconel 182 by laser surface melting," Journal of Materials Processing Technology, Vol.173 (3), pp. 330-336, 2006.
53. JMatPro. 2007, Thermotech Sente Software