| 研究生: |
江英傑 Chiang, Ying-Jay |
|---|---|
| 論文名稱: |
含溴化三甲基一丁基磷鹽和氯化三甲基一丁基磷鹽系統之相轉換特性 Phase Transfer Characteristics of PTC system with butyltriphenyl phosphonium bromide and butyltriphenyl phosphonium chloride |
| 指導教授: |
江建利
Chiang, Chien-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 相轉換 |
| 外文關鍵詞: | phase inversion |
| 相關次數: | 點閱:41 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
相間轉移觸媒催化反應系統的研究,一直是近年來化工研究的重點。對於不互溶兩液相的反應系統,在工業界的應用方面,系統的分散穩定性是很重要的設計條件。當分散相越多,質傳面積越大,系統聚合速率越大,即有可能產生相轉換變化,而相轉換的特性會影響系統的反應速率及行為。
由於相間轉移觸媒反應系統牽涉到兩不互溶的液相,因此相轉換特性為研究該系統穩定性的重要依據。系統的相轉換是指系統內分散相的hold-up增加,在某一條件之下轉變為連續相。決定系統是否已達相轉換可藉由系統內電壓的瞬間改變加以判定。
在相轉移觸媒反應的相關應用與研究中,大多是以四級銨鹽為主,但是四級銨鹽在某些極端的條件下會發生 Hofmann Degradation 現象。例如在強鹼或者是高溫狀態下,會造成觸媒效率降低。比較起來,四級磷鹽的效率並不會低於四級銨鹽,且四級磷鹽在這些條件下比四級銨鹽更來得穩定,因此本文中選擇磷鹽為相間轉移觸媒。
本文以溴化三甲基一丁基磷以及氯化三甲基一丁基磷做為相轉移觸媒,催化有機相中的苯甲醯氯與水相中的酚鈉合成苯甲酸苯酯,探討非對稱型四級磷鹽的濃度與反應物的濃度對於系統物性、相轉換特性和遲滯相轉換時間的影響。由實驗結果發現,只添加溴化三甲基一丁基磷或者氯化三甲基一丁基磷的反應系統中,攪拌速率增加會使得水相容易成為連續相,也就是說,系統傾向於形成 O/W 乳化。而由於 O/W 乳化態較穩定而使得 O/W à W/O 型式的相轉換較難以發生。而在物性、相轉換hold-up、液滴結合時間與遲滯相轉換時間等特性方面,所得結果皆與使用對稱型四級磷鹽相轉移觸媒的結果大致相似。相較於氯化三甲基一丁基磷相轉移觸媒的系統,添加溴化三甲基一丁基磷後的相轉換hold-up較高,顯示添加溴化三甲基一丁基磷鹽後更容易形成 O/W 乳化態。但是添加溴化三甲基一丁基磷的相轉換系統中,當濃度較大時,由於界面張力的效應漸漸變的重要,所以相轉換特性曲線反而隨著觸媒濃度增加而往下移,氯化三甲基一丁基磷則因界面張力的影響較小而無此現象。
Recently many researches have been dedicated to the study of phase transfer catalytic reaction systems. In view of the industrial applications, the stability of the dispersed system, involving two immiscible liquids, is of much importance in the industrial operations. Increasing the volume fraction of the dispersed phase will result in the increase of the mass transfer areas, promote the drops coalescence rate and eventually lead to the phase inversion, i.e. the dispersed phase becomes the continuous phase and vice versa. The characteristics of phase inversion will affect the reaction rate and the dispersion behavior of the system.
For the system with two immiscible phases, characteristics of phase inversion are the major concerns from the view point of the system stability. Phase inversion means that the equilibrium of the continuous phase and the dispersion phase in the system was broken. The happening of phase inversion can be observed by the abrupt change of voltage in the system.
Quaternary ammonium salts have been used in the majority of reported phase transfer studies, but quaternary phosphonium salts can be equally effective, and may be preferred under some extreme conditions of high temperature or concentrated bases when Hofmann Degradations occur. As the results, quaternary phosphonium salts is better than quaternary ammonium salts and more stable. Hence the quaternary phosphonium salts are selected to be the phase transfer catalysts in this text.
In this thesis, we use the synthesis of phenyl benzoate from benzyl chloride in the organic phase and sodium phenolate in the water phase with butyltriphenyl phosphonium chloride and butyltriphenyl phosphonium bromide as the catalysts to study the variations of the characteristics of phase inversion upon the phase transfer catalyst concentrations and reactant concentrations. In the systems with phase transfer catalyst added only, we find that it tends to help water becoming the continuous phase when the rotor speed increases, i.e. it tends to form an oil in water emulsion. Therefore, the occurrence of oil in water transforming to water in oil is more difficult. In this study, the variations of the physical properties, characteristics of phase inversion, droplet coalescence time and delayed inversion time of the system are similar to those obtained by using the symmetrical quaternary phosphonium salts. In general, the hold up of phase inversion of systems with butyltriphenyl phosphonium bromide added is higher than those with butyltriphenyl phosphonium chloride added. It shows that it is easier to form an oil in water emulsion after butyltriphenyl phosphonium bromide are added. But as the concentration of butyltriphenyl phosphonium bromide is high, the interfacial tension of the system is getting more important. And the phase inversion curves move downward with increasing catalyst concentration. However this behavior is not observed in the system with butyltriphenyl phosphonium bromide as the catalyst due to it’s lower influence of interfacial tension.
1. Arashmid, M. and Jeffreys, G. V.〝Analysis of the Phase Inversion Characteristics of Liquid-Liquid Dispersions〞AIChE Journal, 26, No. 1, 51 (1980).
2. Asai, S., Nakamura, H., Okada, W. and Yamada, M.〝Synthesis of Hippuric Acid with Inverse Phase Transfer Catalyst in a Reaction System〞Chemical Engineering Science, 50, No. 6, 943-949 (1995).
3. Brooks, B. W. and Richmond, H. N.〝Dynamics of Liquid-Liquid Phase Inversion Using Non-Ionic Surfactant〞Colloids and Surfaces, 58, 131 (1991).
4. Chatzi, E. G. and Kiparissides, C.〝Steady-State Drop-Size Distributions in High HoldUp Fraction Dispersion Systems〞AIChE Journal, 41, No. 7, 1640 (1995).
5. Coulaloglou, C.A. and Tavlarides,L.L.〝Description of Interaction Processes in Agitated Liquid-Liquid Dispersion〞Chem.Eng.Sci.32, 1289 (1976).
6. Clarke, S. I. and Sawistowski, H.〝Phase Inversion of Stirred Liquid/Liquid Dispersions Under Mass Transfer Conditions〞Trans IChemE, 56, 50 (1978).
7. Efthimiadu, I. and Moore, I. P. T.〝Phase Inversion of Liquid-Liquid Dispersions Produced Between Parallel Shearing Plates〞Chemical Engineering Science, 49, No. 9, 1439 (1994).
8. Gilchrist, A., Dyster, K. N., Moore, I. P. T., Nienow, A. W. and Carpenter, K. J.〝Delayed Phase Inversion in Stirred Liquid-Liquid Dispersions〞Chemical Engineering Science, 44, No. 10, 2381 (1989).
9. Groeneweg, F., Agterof, W. G. M., Jaeger, P., Janssen, J. J. M., Wieringa, J. A, and Klahn, J. K.〝On the Mechanism of the Inversion of Emulsions〞Trans IChemE, 76, part A, 55 (1998).
10. Guilinger, T. R., Grislingas, A. K. and Erga, O.〝Phase Inversion Behavior of Water-Kerosene Dispersion〞, Ind. Eng. Chem. Res., 27, 978 (1988).
11. Kato, S., Nakayama, E. and Kawasaki, J.〝Types of Dispersion in Agitated Liquid-Liquid Systems〞The Canadian Journal of Chemical Engineering, 69, 222 (1991).
12. Kumar, S., Kumar, R. and Gandhi, K. S.〝Influence of the Wetting Characteristics of the Impeller on Phase Inversion〞Chemical Engineering Science, 46, No. 9, 2365 (1991).
13. Kumar, S.〝On Phase Inversion Characteristic of Stirred Dispersions〞 Chemical Engineering Science, 51, No. 5, 831 (1996).
14. McClarey, M. J. and Mansoori, G. A. 〝Factors Affecting the Phase Inversion of Dispersed Immiscible Liquid-Liquid Mixtures〞The American Institute of Chemical Engineers, 74, No. 173, 134 (1978).
15. Nadiv, C. and Semiat, R. 〝Batch Settling of Liquid-Liquid Dispersion〞Ind. Eng. Chem. Res., 34, 2427 (1995).
16. Norato, M. A., Tsouris C. and Tavlarides L. L.〝Phase Inversion Studies in Liquid-Liquid Dispersions〞The Canadian Journal of Chemical Engineering, 76, 486 (1998).
17. Pacek, A. W., Moore, I. P. T. and Nienow, A. W.〝On the Structure of Turbulent Liquid-Liquid Dispersed Flows in an Agitated Vessel〞, Chem. Eng. Sci., 49, No.20, 3485 (1994a).
18. Pacek, A. W., Nienow, A. W., 〝A Problem for the Description of Turbulent Dispersed Liquid-Liquid Systems〞, Int. J. Multiphase Flow, 21, No.2, 323 (1995).
19. Quinn, J. A. and Sigloh, D. B.〝Phase Inversion in the Mixing of Immiscible Liquid〞The Canadian Journal of Chemical Engineering, 41, 15 (1963).
20. Sajjadi, S., Jahanzad, F. and Brooks, B. W. 〝Phase Inversion in Abnaormal O/W/O Emulsion: I. Effect of Surfactant Concentration〞Ind. Eng. Chem. Res., 41, 6033 (2002).
21. Samant, K. D.,Singh, D. J. and Ng, K. M.〝Design of Liquid-Liquid Phase Transfer Catalytic Processes〞AIChE Journal, 47, No. 8, 1832 (1980).
22. Selker, A. H. and Sleicher, Jr. C. A. 〝Factors Affecting which Phase Disperse when Immiscible Liquids are Stirred Together〞 The Canadian Journal of Chemical Engineering, 43, 298 (1965).
23. Skelland, A. H. P. and Jeffrey, S. K.〝Transient Drops Size in Agitated Liquid-Liquid Systems, As Influenced by the Direction of Mass Transfer and Surfactant Concentration〞 Ind. Eng. Chem. Res., 31, 2566 (1992).
24. Smith, D. V. and Davies, G. A.〝Coalescence in Droplet Dispersions〞The Canadian Journal of Chemical Engineering, 48, 628 (1970).
25. Starks, C. M., Journal of the American Chemical Society, 93, 195 (1971).
26. Starks, C. M. and Owens, R. M.〝Phase-Transfer Catalysis. Ⅱ. Kinetic Details of Cyanide Displacement on 1-Halooctanes,〞Journal of the American Chemical Society, 95,No.11,3613 (1973).
27. Vaessen, G. E. J., Stein, H. N., 〝The Applicability of Catastrophe Theory to Emulsion Phase Inversion〞, J. Colloid Interface Sci., 176, 378 (1995).
28. 何美玲, 〝Marangoni 效應對相轉換特性的影響〞 成功大學化工研究所碩士論文 (1996).
29. 李珠瑤, 〝三液相相轉移催化反應系統的相轉換現象〞 成功大學化工研究所碩士論文 (1996).
30. 沈艾霖, 〝以反相相轉移觸媒催化合成苯甲酸苯酯系統之相轉換特性〞 成功大學化工研究所碩士論文 (2001)
31. 李耀昇, 〝利用相間轉移觸媒合成苯甲酸苯酯及其衍生物之研究〞成功大學化工研究所碩士論文 (1993).
32. 張炯宏, 〝相間轉移觸媒反應系統的相轉換現象研究〞 成功大學化工研究所碩士論文 (1995).
33. 張德興, 〝含PEG相轉移觸媒系統的相轉換特性〞 成功大學化工研究所碩士論文 (1999).
34. 陳怡伶, 〝以對稱型四級銨鹽為觸媒之三液相相間轉移催化反應系統之相轉換特性〞 成功大學化工研究所碩士論文(1999).
35. 賴明孝, 〝批示軸槽的相轉換特性〞 成功大學化工研究所碩士論文 (1994).
36. 謝銓晟, 〝觸媒構造對相間轉移觸媒反應系統相轉換特性的影響〞 成功大學化工研究所碩士論文 (1997)
37. 楊若怡, 〝以反相相轉移觸媒對-二甲基胺砒碇催化合成苯甲醯甘胺酸系統之相轉換特性〞 成功大學化工研究所碩士論文 (2002)
38. 陳文科, 〝含溴化四丁基磷系統之相轉換特性〞 成功大學化工研究所碩士論文 (2003)